
Technical Reot1163

AaKAM"
Automatic Planning

and Interpretation
of Numerical

Experiments Using
Geometrical Methods

SDTIC "
ELECTE

SJANO 81990J

Kenneth Man-kam YiV

MIT Artificial Intelligence LaboratoryI M)SMRIUTION STATEMN
Approved for public rwieal

Di,, rbuton Unlmited

9o 01 08 093



UNCLASS I F I ED
SE-,-04 4SI- 1 14Or T11S CAGE f%'Ne Data Eler

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
I BFORE COMPLETING FORM

I REDORT NUME I I  
GOVT ACCESSION NO 1. AECIPIINT'S CATALOG 4UME14

AI-TR 1163

4 TI T. E (#rd 3.bt,0) S. TYPE O
ir 

REPORT & PERIO0 COVEREO
KAM: Automatic Planning and Interpretation of technical report
>hmerical Experiments Using Geometrical
Methods S. PVRFOMMINGORG. REPORT NUMBER

7. AuTN4OR(s) S CONTRACT OR GRANT NUMBER(@)

Kenneth Man-kam Yip N00014-86-K-0180
N00014-85-K-0124

9. PERFORMING ORGANIZATION NAME ANO AOORESS 10. PROGRAM ELEMENT P1OJECT. TASKt i iAREA S WOR, UNT NUMEERS

Artificial Intelligence 
Laboratory

545 Technology Square
Cambridge, MA 02139

II. CONTROLLING OFFICE NAME ANO ADDRESS |2. REPORT DATE

Advanced Research Projects Agency August L989
1400 Wilson Blvd. IS. tUMU IOf PAGES

Arlington, VA 22209 
2 25

14. MONITORING AGENCY NAME & AOORESS(I dfflerent re a t C.,,'eflinu Ollice.) IS. SECURITY CLASS. Vlo thl reper)

Office of Naval Research UNCLASSIFIED
Information Systems

Arlington, VA 22217 1s. DECLASSIFICAT1ON/10WNGPA40NGSCHEDUL.E

II, OISTRIBUTION STATEMENT lot thle .epot)

Distribution is unlimited

A

17. DISTRIBUTION STATEMENT (of iffe abstreci o.tnstd In Mock 20. Ii dilferent frm Rop )

IS. SUPPLEMENTARY NOTES

None

Si. KEY WORDS (Cdoninue on pe..tce *ise II necees, nd Identify b block ninbso)

artificial intelligence scierrtific computing
nonlinear dynamics scientific visualization
numerical experiments imagistic reasoning

20. AISTRACT (Continue on Peerse alde It neooo , and adeentit ? 7 blek untoet)

KAM is a computer program that can automatically plan, monitor, and interpret
numerical experiments with Hamiltonian systems with two degrees of freedom.
The program has recently helped solve an open problem in hydrodynamics - the

prediction of onset of chaos in a resonantly excited rectangular wave tank of
finite depth. Unlike other approaches to qualitative reasoning about physical
system dynamics, KAM embodies a significant amount of knowledge about nonlinea
dynamics. KAM's ability to control numerical experiments arises from (cont'd)

DD , 1473 co,,.ouo, ,ovGI,,oSoLE€ UNCLASSIFIED
S/N 0*-0 14"t$ol 0 9

SECURITY CLASSIFICATION OF THIS PAGE (Wheom Dat. 414fe



Block 20 cont's

the fact that it not only produces pictures for us to see, but also looks at

(sic - in its mind's eye) the pictures it draws to guide its own actions. By

combining techniques from computer vision with sophisticated dynamical

invariants, KA M is able to exploit mathematical knowledge, represented in terms

of a "grammar" that dictates consistency constraints on the structure of the

phase space and parameter space. KAM is organized in three semantic levels:

orbit recognition, phase space searching, and parameter space searching.

Within each level spatial properties and relationships that are not explicitly

represented in the initial representation are extracted by applying three

operations - (i) aggregation, (2) partition, and (3) classification - iteratively.

Aocession For

NTIS GRA&I

DTIC TAB

Unanonouced E3
justifiOatio

Br
Distribution/

AvailabilitY Codes

Dist Special

*, , a
,c

!7CTCP

IN 
P



KAM: Automatic Planning and Interpretation
of Numerical Experiments

Using Geometrical Methods

by

Kenneth Man-kam Yip

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 1989 in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the Massachusetts Institute of Technology

Abstract

KAM is a computer program that can automatically plan, monitor, and interpret
numerical experiments with Hamiltonian systems with two degrees of freedom. The

program has recently helped solve an open problem in hydrodynamics - the prediction of
onset of chaos in a resonantly excited rectangular wave tihk'of finite depth. Unlike other
approaches to qualitative reasoning about physical system dynamics, KAM embodies a
significant amount of knowledge about nonlinear dynamics. KAM's ability to control

numerical experiments arises from the fact that it not only produces pictures for us to
see, but also looks at (sic - in its mind's eye) the pictures it draws to guide its own
actions. By combining techniques from computer vision with sophisticated dynamical
invariants, KAM is able to exploit mathematical knowledge, represented in terms of a

S " grammar'-that dictates consistency constraints on the structure of the phase space and

parameter space. KAM is organized in three semantic levels: orbit recognition, phase
space searching, and parameter space searching. Within each level spatial properties and

relationships that are not explicitly represented in the initial representation are extracted

by applying t ee operations - (1) aggregation, (2) partition, and (3) classification -

iteratively.
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Chapter 1

Introduction

Our present analytical methods seem unsuitable for the solution of the im-
portant problems arising in connection with non-linear partial differential

equations and, in fact, with virtually all types of non-linear problems in pure

mathematics. The truth of this statement is particularly striking in the field
of fuid dynamics.... We could.. .justify our contention that many branches

of both pure and applied mathematics are in general need of computing in-

struments to break the present stalemate created by the failure of the purely

analytical approach to non-linear problems.

- John von Neumann [31]

From the study of star and galaxy formation, to aircraft and wing design, to blood

flow in the heart, and to microelectronics device modeling, scientists and engineers are

confronted with nonlinear equations that are inaccessible to analytical methods. Nonlin-

ear equations are full of surprises: nearby initial conditions can lead to widely different

steady state behaviors, and changing the parameters of the equations slightly can result

in abrupt transition from regular to chaotic behavior. However, our present analytical

methods in mathematics are not adequate for the solution of most of these problems.

Over 40 years ago, John von Neumann already had the grand vision that some day

high-speed computing devices might help scientists to "break the deadlock", and achieve

significant progress in many types of nonlinear problems. To some extent, computer

scientists have been playing a key role in madng von Neumann's dream come true. They

have been building faster and bigger computers. Our machines today are about six orders



of magnitude faster than those in von Neumann's days. The increase in memory size is
equally impressive.

But why is it that almost all the keys problems that von Neumann proposed as
suitable for computational attacks still remain unsolved? Is this because our computers
today are not fast enough? Not large enough? Perhaps so. But I think there is another
reason: our present computers are too dumb. They are good at generating numbers or
even pictures, but not at qualitative understanding. They can generate lots of low-level
data, and they even know how to present them graphically for human comprehension.
But they do not understand the numbers they generate nor the pictures they present.
They do not know what the essential features of the solution are. They cannot represent
the important features in such a way that they can talk about them, reason about them,
and use them to guide further experiments.

My thesis is that in order to accomplish what von Neumann envisioned, our comput-
ers must be much smarter. They should be a helpful assistant to a scientist. They should
have the capability to automate many phases of a numerical experiment that require sub-
stantial human effort and judgment. For instance, they should be able to plan numerical
experiments, monitor the simulation, and interpret the numerical results in high-level,
qualitative terms. They should produce a kind of executive summary for the scientist,
giving him the information that he really needs to solve his problems. Working with
such intelligent assistants, scientists can concentrate their efforts on theory formulations,
testing new ideas, and the design of new experiments.

I have built a suite of computer programs that are smart enough to serve scientists
and engineers as useful problem-solving partners in studying a certain class of nonlinear
problems. These programs perform tasks that go beyond number crunching, algebraic
manipulation, or graphical display. They proceed directly from a system of equations to a
global, qualitative description of the possible long-term behaviors. They do not produce
rigorous proofs of the solution; instead, they provide scientists with strong intuitions
about the consequences of their mathematical models.

This dissertation is about a theory of problem solving embodied in this set of computer
programs. The programs are collectively known as KAM. I KAM can autonomously
explore the behaviors of a specified dynamical system: it plans and executes numerical
experiments, and interprets the results of numerical computations in high-level qualitative

terms.

'The acronym stands for three wotuematicians - Andrei Kolmogorov, Vladimir Arnold, and
Jirgen Moser - who proved a key theorem in modern classical mechanics.
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KAM operates in the world of Hamiltonian (conservative) systems with two degrees
of freedom. KAM knows about Hamiltonian dynamics, and knows how to recognize and
manipulate two-dimensional shapes. Because of i s knowledge of dynamics and geome-
try, KAM can visualize solutions to a dynamical system as concrete geometric objects.
Qualitative, geometric reasoning about these geometric objects suffices to determine the
gross, long-term characteristics of the system. Effects due to perturbation of initial states
or different forcing functions are modeled by bending and distorting the shape of these
geometric objects. KAM is the first implemented computational system that combines
deep knowledge of Hamiltonian dynamics with techniques from computational vision.

This dissertation makes two claims. The first claim is that for computers to make
a genuine impact in science, we must be able to capture and articulate deep domain
knowledge in an explicit and precise manner so that computer programs can reason
about it, manipulate it, and pass it on to other computer programs to deduce further
consequences. In a sense this claim is related to an approach advocated by a subfield
of artificial intelligence, the expert systems. But there is an essential difference. I am
not making any claims about what the right computational tools are for capturing the
knowledge. In particular, I do not think the present techniques in artificial intelligence
- production systems, logic programming, semantic nets, for example - are adequate for
many of the tasks that I want my programs to do. For instance, we still do not know how
to represent shapes of most objects, 2D or 3D, so that they may be efficiently matched,

manipulated, or learned.

A corollary of the first claim is that making intelligent computers for scientific com-
puting means lots of hard work. The reason is that in many scientific disciplines the
domain knowledge is not available in a readily digestible manner suitable for some so-
called "knowledge engineer" to spoon-feed it to our computers. Often enough we will
find domain experts having trouble in articulating certain aspects of their knowledge. I
think there is good reason for it: they rarely think about their own thinking in explicit
and unambiguous terms.

The second claim is that, like many mathematicians, a computer can also benefit
from one of Poincar6's great insights - the insight that the language of geometry and
topology is a powerful way of thinking about dynamical systems. Just as thinking about
the dynamics of linear time-invariant systems in terms of Fourier transforms is often
simpler and more powerful than in terms of time-domain methods, describing nonlin-
ear dynamics in a geometric language (including concepts such as topology, dimension,
manifold, transversality, and so forth) provides greater insights than those obtained from
time-series representation of solutions to the differential equations.

3



I believe there is much to be learned about geometric thinking - thinking about
images, extracting information from them, and relating them to symbolic descriptions.
But, to borrow a phrase from Seymour Papert, it's hard to "think about thinking without
actually thinking about thinking about something" [23]. I am proposing that the subject
of dynamics is an incredibly rich domain for studying such thinking processes.

1.1 GOAL: AUTOMATE PART OF A SCIENTIST'S WORK

Formulating physical phenomena in precise mathematical language, working out the con-
sequences of the formulation, and comparing how well the consequences actually predict
experimental results - this is a scientist's great task. Figure 1 shows the task pictorially.
The task can be conveniently divided into four phases. The first phase, modeling or
theory formulation, involves the construction of a mathematical model that captures
certain aspects of the phenomenon being studied. Typically, a physical problem leads
to a mathematical model composed of two parts: (a) a system of (ordinary or partial)
differential equations, and (b) a set of boundary and/or initial !onditions. Frequently,
great skill and ingenuity are required to invent a model that is concise and realistic,
and yet is simple enough to be amenable to mathematical analysis. The creation of a
tractable mathematical model often depends on making simplifications and assumptions
about the nature of the physical system and various external influences acting on it.

The second phase, analysis, concerns deducing properties of the mathematical model.
Understanding the consequences of the mathematical model is often achieved by heuristic
methods, involving the interplay between analysis, geometry, and numerical and symbolic
computation.

The third phase, measurement, is the process of obtaining empirical data. The
measurement process can be very time-consuming, requiring sophisticated instruments
and techniques. In large experiments, it is common that the measurement is carried out
by a special team of experimentalists.

The fourth phase, model evaluation, is marked by the theorist's comparing the
model predictions with experimental data obtained by direct observations of the real-
world phenomenon. Ideally, solutions of the mathematical models have values that ap-
proximate the measured values in the physical system. If the match between the model
predictions and empirical data is satisfactory, the scientist can write a paper summariz-
ing his findings; otherwise, he goes back to the modeling step, modifying some of the old
physical assumptions or adding new ones.

4



WHAT A SCIENTIST DOES

-' /Physical I
process Mathematical

I Behavior

5- -

Figure 1.1: Four phases of a scientific study: modeling, analysis, measurement, and
model evaluation

All four phases require substatial human effort, judgment, ad insight. Nevertheless,
in many cases - particularly when essential nonlinearity is present in the model - working
out the consequences of the physical assumptions is much harder than formulating them.
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A good example is the Navier-Stokes equations describing fluid motion. Knowing the

governing equations sheds little light on the nature of turbulent motions of fluids.

Like Galileo's telescope which allows astronomers to track motion of distant plan-

ets, numerical simulation is an invaluable tool for revealing detailed consequences of a

mathematical model. It is, however, a laborious process. Each particular set of initial

states and parameter values generates one particular solution. To characterize the typi-
cal behavior of a system one must sample a large number of initial states and parameter

values. Worse still, interesting behaviors often occur within a narrow region of phase

space or parameter space. A brute force numerical exploration requires substantial com-

putational time to generate numerical results, and substantial human effort to organize
and comprehend them.

KAM is a prototype system that makes numerical exploration more tractable. The

program makes an executive summary of the computation results in a form meaningful
to a scientist, highlighting important qualitative properties of a system such as global

structure of a phase portrait, bifurcations of steady states, and the fraction of phase

space occupied by chaotic orbits as a function of parameter. It does not just present the

numerical results graphically. It represents the essential features of the solution, reasons
about it, and uses its understanding to guide selection of initial states and parameter

values for further experiments.

1.2 HENON'S AREA-PRESERVING MAP: AN ILLUSTRATION

To illustrate how KAM works, we will use an example motivated by problems in celestial

mechanics. The example is not really physical; it is a kind of mathematical abstraction,

a simple stripped-down mathematical model. The purpose of the model is to illustrate

the types of behavior that can arise in more complicated, realistic models.

In 1962 Michel Henon, a French astronomer, was thinking about motion of a star

within a galaxy. In doing so, he was interested in a variety of questions. What kind of

motion is possible for the star with different energy levels? For example, under what

conditions will the star undergo simple periodic motion? More complicated recurrent

motion? Or even chaotic motion? If the motion turns out to be chaotic, then it has

interesting implications. For instance, it means predicting its place of origin is in all

likelihood impossible because any small uncertainty of its current position and velocity

will be greatly amplified when the motion is integrated forward or backward in time.

6



Henon assumed the gravitational potential of the galaxy i& axisymmetric and so mod-
eled the star motion as a Hamiltonian system - loosely, systems without friction - with
two degrees of freedom. Even with great simplifications, the differential equations in-
volved are still too hard to be solved analytically. So with the help of a graduate stu-
dent, Carl Heiles, he numerically solved the equations for many different initial states
and energy levels.

The conventional wisdom then was that only periodic or combinations of periodic mo-
tion are possible. After all, these are the kind of motion that classical analytical methods
can handle. At low energies, Henon indeed found the regular orbits that classical theory
predicts. But, to his surprise, when the energy was increased to a certain critical level,
most of these regular orbits disappeared. In place of them were irregular, chaotic orbits
that wandered around the phase space in a random manner. The phase portrait was filled
with intriguing structures. Henon and Heiles could not come up with a mathematical
explanation of what they observed.

Partly motivated by the intricacies of the star motion problem, Henon decided to look
at a much simpler problem, which he hoped can lead to some mathematical insights.
The simple model is subsequently known as the Henon map, and was published in
an important paper "Numerical Study of Quadratic Area-preserving Mappings" in 1969
[11]. The model is extremely simple: just a pair of difference equations that map a plane
onto itself.

Z+1= Z, cos a - n)sin a

ln+1 = zn sin a + (y- z)cos

where zn E (-1 1),Y,, E (-11) and a E (0 2.2).

The Henon map has a special property: area-preservation. That means if such a map-
ping is used to transform any region of the phase space, its area remain unchanged after
the transformation. The area-preserving property is crucial because it is a consequence of
Hamiltonian systems, systems that conserve energy. If you throw away area-preservation,
you throw away the essential physics of a Hamiltonian system.

Without the quadratic terms, the Henon map describes a simple rigid rotation on the
plane with an angle a. But the quadratic terms are essential because they are responsible
for creating a mixture of regular and chaotic orbits resembling those found in Henon and
Heiles' original problem.

Fig. 1.2 displays the result of a numerical experiment with the Henon Map for one
particular parameter value a. The picture is a mixture of a series of closed curves,

7



several island chains, and a region stippled with dots. The closed curves represent regular
quasiperiodic motion, i.e., points move regularly around the curve. Points on the islands

jump regularly from one island to another. The centers of the islands represent a stable
periodic orbit that comes back to itself every 5 times. The stippled region represents

chaotic orbits. Points belonging to these orbits hop around the phase space randomly.
By adjusting the parameter a, one can get a completely different picture with the regular

and chaotic orbits mixed up in a different way.

Figure 1.2: The phase portrait for Henon masp with a = 1.3284305. This picture is

directly taken from Henon's paper. Compare this with the one that KAM finds.

Notice that Henon was very selective in performing the numerical experiment, and

presenting the numerical results. He chose only a dozen orbits to represent the essential

features of the phase portrait. There are lots of other initial states he did not try.

Moreover, out of the infinitely many parameter values, he picked only ten of them to

show the qualitative changes in the phase portraits as a function of parameter. How

was Henon able to do this? Can a machine automate this experimenting process? Can

it parse the visual arrangements of the points and generate meaningful interpretations?

Can it produce summary descriptions like the ones that Henon gave in his paper?

8



1.3 WHAT KAM DOES

Fig. 1.3 displays the output of KAM when it is run on the Henon map with parameter
value a = 1.3284305. The upper panel shows the phase portrait that KAM finds. It
consists of 10 orbits. The picture is remarkably similar to Fig. 1.2 taken directly from
Henon's paper. The bottom panel shows KAM's summary of its finding in terms that
are meaningful to dynamicists. Note that KAM does not have any natural language
understanding capability. The description, written in stylized English, is solely for us
to read. What's important is that KAM represents what it finds in some symbolic data
structure that can be reasoned about and manipulated by other programs.

The example above represents a single experiment for one particular parameter value.
After running a complete set of experiments, KAM produces 38 phase portraits corre-
sponding to 38 different parameter values chosen from the range (0, 2.2). The phase
portraits capture all the major bifurcations that occur in Henon map. What's interest-
ing is that KAM finds something new: it finds a bifurcation of a large 7-island chain that
is not reported in Henon's paper. Fig. 1.4 shows part of the executive summary that
KAM generates. The summary contains the kind of high-level, qualitative information
that a dynamicist may want to know in order to solve his problems.

1.4 HOW KAM DOES IT

Given a family of mappings depending on some parameter, how can one systematically
explore its behavior by sampling a finite number of initial states and parameter values?
Let's see how a human expert does this. The flow chart in Fig.1.5 illustrates the overall
strategy a human experimenter may adopt in such exploration.

First of all, we must specify the input. It consists of three pieces of information: (1)
the model equations, (2) the range of initial states, and (3) the range of some system
parameter.

The first decision box is the termination condition for the experiment. The experi-
menter checks if he already has a self-consistent family of phase portraits. That is, he
asks whether he has already found all the interesting qualitative changes in behavior as
the parameter is vaxied. To illustrate the notion of qualitative changes, think of adding
weights to the top of a vertical, elastic column. With a light weight, the column com-
presses a little. When the weight is gradually increased, the column suddenly buckles
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Figure 1.3: Upper: KAM produces the phase portrait for for the Henon map with
a = 1 .3284305 (a is shown as "A" in the figure). Lower: KAM generates a summary
description of the phase portrait.

to one side or the other. The vertical equilibrium position of the column has become

unstable - a slight disturbance will move the column into a new stable state, one of the

two buckled positions. So increasing the loading causes both the number of steady state

behavior and their stability properties to change. In other words, changing the vertical

loading causes a qualitative change in behavior of the column. We say a bifurcation

has occurred.

Dynamicists like to represent behavior by orbits in a phase portrait. Qualitative
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P~ieare-Dirkheff blfureatioa:
& pair of pered-? orbits appears at about 1.000 and the 7-island chali disappears at about 1.167.

Poizars-Sirkhbff bifurcation:
A pair of peried-6 orbits appears at about 1.075 emd the 6-island chain disappears at about 1.267.

Po iaaze-birkhoff bitureation:
A pair of peried-S orbits appears at about 1.271 mad the S-island shaia disappears at about 1.437.

Poineare-Bizkeff bilureation:
A pair of peried-4 orbits appears at about 1.574 W4d the 4-isld chain disappears at about 1.666.

Peiasare-Birkkoge bItureation:
A pair of peried-? orbits appears at about 1.$19 amd She 7-island chain disappears at about 1.873.

Iztrmol bi fureat ion:
A pair of poried-3 orbits appoars at about 2.003 and the 3-island cdad& disappears at about 2.037.

Phentou-3-kiss bi-urcation:
The unstable period-3 orbit collide, with fized point at about 2.044.

Figure 1.4: KAM generates a summary description of the major bifurcation patterns for
the Henon Map.

changes in behavior corresponds to topological changes in the phase portraits. A self-
consistent family of phase portraits just means that all the topological changes can be
explained by some mathematical theory of bifurcation.

If a self-consistent family of phase portraits is found, then the experimenter summa-
rizes his major findings from the experiments. Otherwise, he chooses another parameter
value for further experiments. Of course, what parameter value to try next depends on
his knowledge about what qualitative changes he has already found, and what kinds of
bifurcation are likely to occur.

Behavior of a nonlinear system is in general very sensitive to the initial conditions.
So the experimenter has to sample a sufficient number of initial states to map out the
global behavior of the system. But the choice of these initial states are not random. It is
suggested by what's seen so far, and often requires knowledge about how different pieces
of behavior can be fitted together.

After he has chosen an initial state, he decides how long he should run the simulation.
For a common type of simulation, namely, integrating differential equations, he has to
decide how many integration steps to take for a given initial state. Taking too many
steps is costly. On the other hand, taking too few steps will not reveal the steady state

11
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Figure 1.5: A Bow chart showing the steps that a human expert may take in numerical
experiments. Lots of knowledge and judgment are required in each decision box.
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behavior. So he has to be able to make a judgment here.

Finally, he has to interpret the numerical results and extract the proper implications
for empirical or further numerical verification.

I have just described how a human expert goes about doing numerical experiments to
uncover consequences of some mathematical model. There are three identifiable pieces:
(1) choosing parameter values and deciding when to stop, (2) choosing initial states,
and (3) recognizing a steady state behavior. Each of these pieces requires decisions that
depend on the expert's knowledge of what has been going on in the experiment, and his
general knowledge about how such a mathematical model can behave.

KAM operates in an analogous way because its design is guided by the understanding
of how I myself plan, monitor, and analyze numerical experiments. In particular, KAM
uses a similar kind of knowledge - both mathematical and geometrical - to constrain its
search for interesting behaviors as its human counterpart does.

1.5 WHAT DOES KAM BUILD ON?

A fundamental paradigm in building intelligent systems is the exploitation of physical
constraints. The power of the paradigm is first demonstrated in David Waltz's program
to interpret line drawings in a world of polyhedral objects [32]. 2 The paradigm consists
of three parts: (1) defining the primitive objects in the domain, (2) cataloging all legal
combinations of the primitive objects, and (3) implementing a constraint satisfaction
procedure based on the catalogue of legal combinations.

Waltz's methodology strongly influenced the design and implementation of KAM. On
a certain level KAM is the same as Waltz's program: they capture significant physical
constraints that dictate the structure of interactions among primitive objects of the

domains; they use local evidence to arrive at global conclusions; and they embody the
knowledge in terms of a constraint satisfaction algorithm.

3A few years before, David Hufman [13] and Maxwell Clowes (6] already had the idea that an
exhaustive analysis of all possible local physical arrangements of surfaces and edges can provide a basis
for solving the line interpretation problem. Waltz's contribution, however, was to demonstrate that a
library of all legal junction geometries can lead to an efficient algorithm for interpreting line drawings.
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1.6 REST OF THE STORY

The remainder of this dissertation is organized as follows. In Chapter 2, I give an overview
of KAM. The first part of the overview describes what it is like to use KAM. The second

part goes over the major pieces of the program. The next three chapters are concerned
with each of these pieces.

Chapter 3 is about orbit recognition. This chapter explains the possible types of
steady state behavior of a Hamiltonian system with two degrees of freedom. It then
shows how KAM recognizes shape of orbits, and uses symbolic descriptions of shape to
classify the type of an orbit.

Chapter 4 is about phase space searching. It explains the knowledge that KAM
has about different ways in which orbits can fit together in phase space, and how this
knowledge can be used to constrain its search for initial states.

Chapter 5 is about parameter space searching. It starts with a description of the
bifurcation theory for Hamiltonian systems. It then describes how knowledge of typi-
cal bifurcations is embodied in KAM, and how such knowledge provides the basis for
generating a high-level executive summary of the numerical experiments.

Chapter 6 is about using KAM to understand an open problem in hydrodynamics:
the prediction of the onset of chaos in a wave tank.

The last chapter is the conclusion. I explain what really makes KAM work, describe
how the state of the art is advanced by KAM, and sketch out some future directions to
pursue.
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Chapter 2

Overview of KAM

KAM is a collection of programs that can plan, monitor, and interpret numerical exper-

iments involving Hamiltonian systems with two degrees of freedom. KAM embodies a

significant amount of knowledge about nonlinear dynamics, and is able to visualize solu-

tions to the dynamical systems as geometric objects. There are lots of details involved in

explaining how KAM works. But there is little reason to get bogged down by the details

now. The purpose of this chapter is to acquaint the reader with KAM: its use, its major

pieces, and its underlying computational structure.

2.1 A SESSION WITH KAM

The following sample dialogue shows how KAM aids a scientist in exploring the dynamics

of the Henon map. KAM is written in Zetalisp, running on the Symbolics Lisp Machine.

It is completely working; all the capabilities shown have been implemented and tested on

many examples. The session is presented in part via an English dialogue solely for the

benefit of the reader. KAM has no natural language capability; I have simply paraphrased

KAM's output in stylized English.

Scientist: Here are the equations for Henon map, the definition of phase space, and the

range of parameter value. (He types in the eqUation. (Fig. 2.1). He also types in range of

state variables and the parameter.] Consider the phase portrait with a = 1.3284305. Show

me the orbit starting at the initial state as indicated by the mouse click. [The initial state is

(0.08, 0.72).]

15



KAM: The orbit is a QUASIPERIODIC ORBIT with rotation number between -L and 1 . It
took 256 iterates to reach steady state (Fig. 2.2a).

Scientist:. Do the same for the new mouse click. [The initial state is (0.046, 0.011).]

KAM: The orbit is a QUASIPERIODIC ORBIT with rotation number between " and .
It took 256 iterates to reach steady state (Fig. 2.2b).

Scientist.- Show me the entire phase portrait.

KAM: [KAM decides what initial states to look at. After some time, KAM displays a phase
portrait (Fig. 2.3), and report, its finding..]
The portrait has an elliptic fixed point at (0.000, 0.000). Surrounding the fixed point is a
regular region bounded by a KAM curve with rotation number between 1/5 and 1/4. Outside
the regular region lies a chain of 5 islands. The island chain is bounded by a KAM curve with
rotation number between 4/21 and 5/26. The outermost region is occupied by ESCAPE orbits.
Chaotic orbits occupy 62% of phase space.

Scientist: Show me all the major bifurcations as the parameter a is varied.

KAM: [KAM decide. what parameter value, to look at. After some time, KAM makes the
following ezecutive report.]
In the parameter range (0, 2.2), KAM finds a total of 38 phase portraits.
The following bifurcation patterns are observed:
Poincare-Birkhoff bifurcation:

A pair of peziod-8 orbits appears at about 0.875 and the 8-island chain disappears at about 1.075.

Poinesare-Birkhoff bifurcation:.

A pair of peziod.? orbits appears at about 1.000 and the 7-island chain disappears at about 1.167.

Poincare-Birkhoif bifurcation:

A pair of peziod-6 orbits appears at about 1.075 and the 6-island chain disappears at about 1. 25 7.

Pointar*-Birkhoffbifurcaions

A pair of per1.45 orbits appears at about 1.271 and the 5-Wsand chain disappears at about 1.437.

Poiacare-Birhhof bfuralcin

A pair of pedo4 orbits appears at about 1.574 and the 4-island chain disappears at about 1.65 5.

Poincare-Birkhoif bifurcatoas

A pair of pealo7 orbits appears at about 1.819 and the 7-island chain- disappears at about 1.873.

Extremsal bifuradow.

A pair of perlod.3 orbits appears at about 2.003 and the 3-Wdand chain disappears at about 2.037.

Phanton-3-hlss bifurcation:

The unstable peulod3 orbit codes with fixed point at about 2.064.

We have just seen what it is like to run a session with KAM. As shown in the dialogue,
KAM has the following four capabilities:
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Figure 2.1: Input to KAM: (1) equations of motion, (2) range of state variables, (3) range
of parameter, and (4) escape range.

a -4. 0

I I 4l. - -4.I4 I S I

(a) KAM identifies the first quasiperiodic orbit. (b) KAM identifies the second quasiperiodic orbit.

Figure 2.2: KAM decides how many iterates to look at. It also identifies the type of an

orbit. If the orbit is quasiperiodic, KAM computes a bound for its rotation number.

e It decides when an orbit reaches steady state.

e It identifies the type of an orbit.

* It decides what initial states to look at.

* It decides what parameter values to look at.

In addition, KAM is able to interact with the user at a high, conceptual level; it talks
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Figure 2.3: KAM decides what initial states to pick. The phase portrait it produces

consists of¢ 10 orbits.

about fixed point, orbit, rotation number, regular and chaotic region, and bifurcation.

The remainder of this chapter describes the major pieces of KAM, and the compu-
tational processes responsible for deriving a high-level interpretation from collections of
discrete points in the phase space.

2.2 DESIGN CRITERIA

Three criteria govern the design of KAM:

e The decisions that KAM makes must be high quality. That means each decision
to look for an orbit or a phase portrait must have a high probability of finding
something interesting. The quity of decision can be measured in terms of the
number of orbits and phase portraits that KAM has to try in order to describe a
mapping's behaivior globally.

e The descriptions of behavior that KAM mikes must be concise, manipulatable by

other programs, and useful to a dynamicist. That means KAM has to be a useful
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tool for someone doing real science, and should be organized in a modular way that
allows future expansion of its capabilities.

e The consequences of KAM's ezecution must be understandable in terms of its knowl-
edge of geometric algorithms and Hamiltonian dynamics. That means two things:
first, the knowledge that KAM has must be intelligible to a dynamicist, and hence
is sharable and teachable to a novice; second, KAM's behavior can be explained in
terms of knowledge that is independent of the particular program implementation.

The next section will explain how KAM is organized to meet these design criteria.

2.3 KAM OVERVIEW: STRUCTURE AND PROCESSES

2.3.1 Major components of KAM

Fig. 2.4 shows the basic components of KAM. There are four computer programs: (1)
the window interface, (2) the orbit recognition program, (3) the phase space searching
program, and (4) the parameter space searching program.

KAM operates in the following manner. The user interacts with the window interface.
He can invoke different programs of KAM via the commands in the interface. The user
input consists of data about the mapping that he wants to explore. The orbit recognition
program conducts automatic orbit recognition. It requires a knowledge base of known
orbit types. Its output is a symbolic description of the orbit. The phase space searching
program finds representative orbits in phase space. It requires a set of orbit consistency
rules, which operates on the symbolic descriptions of orbits. Its output is a symbolic
description of the phase portrait. The last component, the parameter space searching
program, searches for all interesting bifurcations as a system parameter is varied. It
requires a list of bifurcation rules, which operates on the symbolic descriptions of phase
portraits. Its output is an executive report summarizing the major behaviors of the
mapping.

2.3.2 The computational processes

The goal of KAM is to extract useful, high-level information about the behaviors of a
mapping from a collection of point sets representing orbits in phase space. In solving this
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Figure 2.4: Major components of KAM.
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problem, KAM faces two central questions: (1) where should it look for these point sets,

and (2) how can a symbolic orbit or phase portrait or bifurcation description be arrived

at?

As there is a large semantic gap between the input (which is sets of discrete points)

and the output (which denotes some meaningful events in Hamiltonian dynamics), it

is almost certainly impossible to transform the input into the output in one step. A

more reasonable strategy is to proceed via a sequence of intermediate representations

that allow the gradual recovery of shape properties, spatial relations, and eventually the

more global, dynamical properties of the system. It thus becomes important for KAM

to view an object at different levels of representations such as points on the plane, a

curve, an orbit, part of a flow pattern, and so on. What is needed is a theory of multiple

representations and algorithms for going from one level of representation to another.

Figure 2.5 displays the structure of the computational processes of KAM. Abstracting

away the specifics of Hamiltonian dynamics, the computational structure of KAM can be

described as follows. The computation of spatial relations and recognition of shapes are

organized into three different levels. The number of such levels depends on the domain

semantics. Each level is equipped with a domain-independent geometry (for example, the

dimension and topology of the ambient space, and an appropriate distance metric), and a

list of domain-specific semantic labeling rules. Within each level, properties and relations

that are not explicitly represented in the initial representation are extracted by applying

three operations sequentially: (1) aggregating isolated objects by some adjacency rela-

tion, (2) partitioning the whole aggregate into meaningful subparts, and (3) assigning a

semantic label to the structured object according to domain-specific classification rules.

Semantically labeled objects of one level are then promoted to a higher level where the

three operations are applied again but with different grouping and partitioning criteria.

Let me elaborate on the three semantic levels.

Orbit Level

The bottom level - the orbit level - concerns orbit recognition. Its purpose is to

assign a semantic category, an orbit type, to a collection of points based on the geometry

of the point set. The recognition process proceeds in three steps (Fig. 2.6):

1. aggregating points into a minimal spanning tree
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2. partitioning the minimal spanning tree into clusters

3. classifying the orbit

ORBIT LEVEL

I am a 4-island chain.

O CLASSIFICATION

00PARIO

AGGREGATION

Figure 2.6: The collection of isolated points are aggregated in a MST. The MST is par-
titioned into clusters by deleting inconsistent edges. The inconsistent edges are marked
by the crosses (x) . The geometry and grouping structure of the point set are described
symbolically. A point set is classified by matching its symbolic description with the

symbolic descriptions of known orbit types.

AGGREGATION Iterating a mapping on a given initial point generates a sequence of
points. The first step in recognition is to aggregate these isolated points into a larger
structure, the minimal spanning tree (MST). The MST defines an adjacency relation
between two points: namely, two points are adjacent if and only if there is an edge
connecting them in the MST representation. Certain shape information can already
be extracted from the MST. For example, if the points lie on a closed curve, its MST

representation will not have any nodes that have degree 3 or higher.

PARTITION The second step is to detect clusters in the point set. This step is crucial
because it tells us the clustering structure of the orbit. For example, to recognize a 4-
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island chain, it is essential to find out that the point set consists of four distinct clusters.
To find the clusters, KAM looks for inconsistent edges - edges that are significantly longer

than their nearby edges - in the MST. Deleting the inconsistent edges breaks up the MST
into subtrees, each of which represents a cluster. The output of the partitioning step is
a symbolic description of the point set based on its geometry and clustering structure.
For instance, in Fig. 2.6, the point set is described as an object with four parts, and each
part is a closed curve.

CLASSIFICATION The final step is to assign an orbit type to the point set. The

classification step begins by matching the symbolic description of the point set against a
ist of classification rules. If the description matches a known orbit type, then the type

of orbit is successfully identified. The orbit is passed to the next level. Otherwise, KAM
assumes the input point set does not contain enough points to reveal the entire structure
of the orbit. So it requests more points, repeating the orbit recognition process.

Phase Space Level

The middle level - the phase space level - concerns finding a set of orbits that are

representative, in the sense that they completely characterize the global, qualitative
behavior of the mapping. This search process is known as phase space searching.
Its input is a collection of orbits whose types are already known. The output is a self-
consistent phase portrait, a collection of orbits that fit together in a consistent way.

Phase space searching consists of three steps (Fig. 2.7):

I. aggregating orbits

2. partitioning orbits into groups

3. classifying each group according to canonical flow patterns

AGGREGATION The first step of the search process is to determine the adjacency

relations among the orbits. The collection of orbits are aggregated into a data structure,

an orbit adjacency network. The aggregation criterion here is different from that of the
orbit level. Two orbits are adjacent if it is possible to draw a straight line between them

without crossing a third orbit. The aggregation step is crucial because it guides KAM
to search for representative orbits in the phase space. Specifically, KAM uses a list of

domain-specific consistency rules to check whether two neighboring orbits are pairwise
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Figure 2.7: The collection of orbits are aggregated in an orbit adjacency network. The
spatial relationships among orbits are symbolically described. The symbolic description
is the basis for grouping orbits into canonical fow patterns. Each dotted box encloses a
canonical fow pattern.

consistent. If they are not, then there must be some missing orbits between them. The
output of the aggregation step is a self-consistent orbit adjacency network.

PARTITION The second step is to determine the grouping structure of the orbits.
It is a domain-specific fact that the collection of orbits surrounding a fixed point or a
periodic orbit is an important structure to name and classify. To find the groupings,
KAM determines which orbit is inside or outside which other orbit. The output of the
partition step is a symbolic description of the local structure around a fixed point or a
primary periodic orbit (section 4.8).

CLASSIFICATION The final step is to assign a semantic category to each local struc-
ture. The categories are called canonical flow patterns, which are equivalence classes
of sets of orbits based on the topological structure of the orbits around a primary orbit.
The output of the classification step is a phase portrait consisting of several canonical
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flow patterns. The phase portrait is then passed to the top level.

Parameter Space Level

So far we have talked about objects - orbits and collections of orbits - within a single
picture (one phase portrait). Now, we turn our attention to relationships among different
pictures.

The top level - the parameter space level - concerns finding all the interesting bi-
furcations as some parameter of the mapping is varied. The search process is called
parameter space searching. A bifurcation corresponds to a topological change in the
phase portrait, such as a change in the number or stability of fixed points. So the pur-
pose of the parameter space level is to find a list of topologically different phase portraits
such that the topological changes can be explained by some known type of bifurcation.
Parameter space searching consists of three steps (Fig. 2.8):

1. aggregating phase portraits

2. partitioning phase portraits into groups

3. classifying each group according to bifurcation patterns

AGGREGATION The first step of parameter space searching is the aggregation of
phase portraits. Its purpose is to find out the adjacency relations among phase portraits.
For a single-parameter mapping whose parameter is a real number, the aggregation is
simple. This is because in a 1-dimensional space we have a nice definition of adjacency:
two phase portraits with parameter values p, and p2 are neighbors in the parameter
space if there is no other phase portrait with parameter value P3 such that p3 E (Pi, p2).
Such a relation can be determined algebraically without resorting to elaborate geometric
algorithms like those used in orbit recognition or phase space searching. Like the orbit
consistency checking on the phase space level, there is a domain-specific pairwise phase
portrait consistency checking. When two neighboring phase portraits are found to be
inconsistent, a new parameter value will be proposed for searching out the missing phase
portrait(s).

PARTITION The second step is to describe the topological changes between two neigh-
boring phase portraits symbolically. Phase portraits that are topologically equivalent are
grouped into the same equivalence class.
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Figure 2.8: The collection of phase portraits are ordered according to their parameter
values. Topological changes between neighboring phase portraits are described symboli-
cally. The symbolic description is matched against a list of known bifurcation patterns.
The two phase portraits inside the dotted box are topologically equivalent.

CLASSIFICATION The final step is the assignment of known bifurcation patterns
to subsets of the entire collection of phase portraits. The classification is obtained by
matching symbolic descriptions of topological changes against a list of bifurcation rules.

Upshot

This section is about the underlying computational processes that explain KAM's
behavior. I have omitted lots of details in the description; they are left for the remaining
chapters. The important point is that KAM has a simple computational structure. It
is organized into three different semantic levels - the orbit level, the phase space level,
and the parameter space level. Each level has the same pattern of behavior. Specifically,
within each level, spatial properties and relationships that are not explicitly represented
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in the initial representation are extracted by applying three operations - (1) aggregation,
(2) partition, and (3) classification - iteratively.

Two general observations can be made about these three operations. The first obser-

vation is that aggregation depends on domain-independent geometric knowledge, while

classification is completely domain-specific. Partition has an intermediate character: it

depends partly on domain-independent knowledge, and partly on domain-specific knowl-
edge.

The second observation is about the relationship between geometric and symbolic

representation. The type of geometric manipulations that can be done on an object

depends on what is known about it semantically. For instance, if we know a given point

set represents a quasiperiodic orbit, then we can compute properties of the orbit such

as its curvature and the area enclosed by it. Such properties may not be meaningful for

any arbitrary point set. Symbolic descriptions facilitate the process of classification, the

assignment of semantic category, because matching symbolic descriptions is much simpler

than matching geometric structures directly. So it seems that symbolic description is

derived from a geometric representation of an object for the purpose of matching and

classification. Once its semantic category is known, further shape and spatial information

can be deduced about the object by more specific geometric operations.
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Chapter 3

Orbit Recognition

Chapter 2 provided an overview of KAM's external behavior and its major pieces - orbit
recognition, phase space searching, and parameter space searching. Now we are ready to
analyze each of these pieces. This chapter and the next two are devoted to describing
KAM's internal workings. The present chapter takes up the issue of how KAM classifies
and recognizes different kinds of orbits. This is the Orbit Recognition Problem. In
approaching the Orbit Recognition Problem two main questions arise:

* What are the rules for allocating a collection of iterates to one of the known orbit
categories?

* How many iterates of an orbit are needed for a reliable classification?

Much of this chapter is concerned with expounding a computationally efficient solution
to these problems. The remainder of this introduction briefly initiates that discussion.

Iterating a discrete map on a given initial point z generates a sequence of points
z,f(z),f 2(z),... ,P(x). This sequence of points is called the orbit of x generated by
the map f. An orbit in phase space describes how a system evolves from one state to
another over an interval of time. Understanding the geometric properties (e.g., dimension,
clustering, etc.) of an orbit suggests inferences about the qualitative behavior (e.g.,
chaotic wandering, periodic motion etc.) of the underlying dynamical system.

Any finite segment of an orbit can be thought of as a two-dimensional dot pattern.
Even with little knowledge of dynamics, a naive observer is able to perceive structures

29



in the dot pattern. For instance, he can easily tell whether all the points seem to lie on
some smooth curve, or whether they are grouped into distinct clusters. It seems that
this ability to perceive shape or gestalt of a point set does not require specific domain
knowledge - for example, knowledge about the purpose and function of the perceived
structures. KAM attempts to mimic such perceptual organizational ability to discern
meaningful orbit structures in a pattern of points.

KAM's domain-independent recognition method is based upon computing a geomet-
ric structure, known as the minimal spanning tree (MST), of the points in the dot
pattern. The MST aggregates isolated points into larger structures. By computing cer-
tain properties of the MST, one can extract shape information about the dot pattern,
such as clustering and line structure.

The recognition method based on the MST is embodied in KAM's recognition mod-
ule, which has two nested components: the identification routine and the stability-
control routine. The identification routine constructs the MST of a dot pattern, com-
putes relevant geometric properties of the tree structure, and massages the quantitative
information into a qualitative symbolic description of the shape of the dot pattern. The
symbolic shape description is then fed into a list of orbit identification rules that decides
the orbit category. At this point, the stability-control routine takes over. Its purpose is
to ensure robustness in the identification result. It calls the identification routine with a
larger dot pattern (by taking a longer orbit segment). If the larger dot pattern is classi-
fied into the same orbit category, then the stability-control routine assumes the pattern
has reached a steady state, and so it accepts the result of the identification routine. Oth-
erwise, it will examine a still longer orbit segment and repeat the recognition process
until a steady state is reached.

The content of this chapter is as follows. The first section introduces the prob-
lem of orbit recognition. Section 3.2 argues that the MST provides a sound basis for
a domain-independent method of orbit recognition. Section 3.3 describes methods to
compute shape of a dot pattern from its MST representation. Section 3.4 covers the
implementation of the recognition algorithm. The next two sections, 3.5 and 3.6, present
experimental results. The chapter concludes with a evaluation of the recognition algo-

rithm.
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3.1 WHAT IS ORBIT RECOGNITION?

The iterates of an initial point generated by a discrete map form a set of isolated points

- the orbit through the initial point. Orbit recognition is the problem of classifying this

orbit. Recognizing the orbit type is important because KAM must interpret what it
"sees" in order to direct the course of its numerical experiments. This section describes

the problems involved in orbit recognition. We begin, however, with a few remarks about

the significance of these orbits and about the possible orbit types.

Types of orbits

Consider a system of many bodies moving under the influence of forc - iaw. Suppose

that, at some initial time, the system is in some particular state, and that some time

later, the system returns to exactly the same state, that is, all the bodies have exactly

the same positions and velocities as before. We say then the system repeats itself. By the

uniqueness of solutions to differential equations, if the system repeats itself once, then it

will repeat over and over again. The motion is said to be periodic.

Periodicity is an extremely important concept: it provides many insights into the

behavior of the system. Think of the Earth revolving around the Sun. If the motion of

the Earth were genuinely periodic, then we would know for certain that it won't ever fall

into the Sun, nor will it wander off into outer space.

A fundamental idea in dynamical systems theory is a method, due to Poincari, for

locating periodic solutions to systems of ordinary differential equations [9]. Imagine that

the state of the system is represented by a point in phase space, a high-dimensional

space whose axes are the positions and velocities of all the bodies. As the system evolves

in time, it traces out a curve in phase space. Mathematicians gives this curve a name

- the trajectory corresponding to the initial state. Another name is orbit. The latter

name is probably motivated by analogy with planet motions.

If the system's motion is periodic, the curve in phase space must close up in a loop.

That is, the orbit must be a closed curve. So to look for a periodic solution, all we have to

do is to search for orbits that are closed curves. Notice that this question of whether an

orbit is a closed curve is a purely topological one; it has nothing to do with the size and

shape of the curve. By using the language of topology, we turn the analytical question

about the existence of periodic solutions to differential equations into a question about

the topological properties of an orbit.
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But unless we have a way to find closed orbits in phase space, we won't be making
too much progress in finding periodic solutions. And here is where the power of the
topological viewpoint comes in. Let us first assume the phase space is three-dimensional
for the sake of easy visualization. (The idea involved can easily be generalized to higher
dimensions.) Imagine slicing the phase space with a plane. Let us follow the orbit starting
from some point on this plane. If the motion is periodic, then the curve must return to
the plane at its exact starting point. The curve may intersect the plane several times
before it hits its starting point, or it may do some wild things before it comes back. But
the important point is we don't have to worry about these details. The question we really
want to ask is: Does the curve come back to its exact starting point? If it does, we get
a periodic solution.

This plane is known as the Poincar6 section, after its inventor. It has an obvious
n-dimensional generalization: a (n-l)-dimensional hypersurface embedded inside a n-
dimensional phase space.

The Poincari section is a remarkable idea. The topological viewpoint allows us to get
at a periodic solution without worrying about the detailed dynamics. Instead of following
the entire orbit, we can just focus on how points on the section are mapped onto each
other, ignoring pretty much everything else that happens between the time it leaves the
section and the time it comes back. This mathematical trick buys a lot of simplification.
For one thing, we don't have to deal with differential equations governing the motion in
phase space, but rather discrete mappings defined on the Poincar6 section, which has one
fewer dimension. More important, mapping on a Poincare section - Poincari mapping,
for short - in some sense capture the complete dynamics of the original system. That
is to say the qualitative behavior of the continuous "flow" in phase space can also be
determined from its Poincar6 mapping.

In classical Hamiltonian systems - think of them as systems with no friction - there is
another type of motion that is quite common. This type of motion is called quasiperi-
odic or almost-periodic. Here we have several periodic motions with independent
frequencies combined together. Consider two oscillators. Each of these oscillators ex-
hibits a periodic motion. If the two periods are commensurate, i.e., they are both
integer multiples of some number, then the combined motion is also periodic. The period
of the combined system is actually the least common multiple of the two independent
periods.

But if the periods are not commensurate, then the combined motion never repeats
itself exactly even though it may come arbitrarily close to its starting point. This is why
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we call the motion quasiperiodic.

To see what a quasiperiodic orbit looks like in phase space, we must first figure out
what the phase space for the combined system is. Since a periodic motion corresponds to
a circle (actually a closed curve, but we have said size and shape of the curve don't matter)
in phase space, the space of two combined periodic motion can be thought as the product
of two circles - a 2-torus. Topologically a quasiperiodic motion is pictured as an orbit
winding around the surface of the torus (Fig. 3.1). If the periods are incommensurate,
the orbit will cover the toroidal surface densely. You can imagine the entire phase space
is filled with toroidal surfaces, one nested inside the other, each of which corresponds to
a different ratio of the two periods.

Figure 3.1: Classical picture of a Poincark section near a periodic orbit. A quasiperiodic
orbit is obtained by combining two incommensurate frequencies. Topologically, it covers
the surface of a torus densely. Each circle on the section represents a quasiperiodic motion
with two distinct periods. (From Stewart 1989)

This picture is simple and elegant: it says orbits of any Hamiltonian systems are
either periodic or made up by a combination of periodic ones (Fig. 3.1). It is pretty
much what classical dynamicists before Poincark had in mind. Unfortunately it is wrong
except for a small class of very special systems, called integrable systems. Integrable
systems are those systems that can be solved explicitly by a formula. But such systems
are extremely rare.
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What's wrong with the classical picture is the assumption that the two oscillators that
make up phase space are completely independent of each other. In most systems, they are
coupled. And coupling can produce dramatic effects. An example of coupling effect was
provided by Christian Huyghens, a 17th century scientist, who observed that two clocks
hung on the same wall tend to synchronize. This phenomenon is known as frequency
entrainment, and is caused by the nonlinear coupling between the two clocks.

How does nonlinear coupling change the orbits in phase space? One way to visualize
what happens is to imagine that the effect of the coupling is equivalent to adding some
sort of perturbation to the orbits. Such perturbation may cause a change the direction of
a quasiperiodic orbit so that it no longer lives on one toroidal surface, but wanders freely
from one surface to another. Think of the planets in the Solar System. A planet that used
to be repeating or almost repeating its position may wander off, visiting almost every
place inside the Solar System. Its long-term behavior will become very unpredictable.
This new type of behavior is called chaotic.

But then why isn't our Solar System - a bona fide nonlinearly coupled many-oscillators
system - full of planets that wander around in a random manner? Unfortunately we don't
have a definite answer to this question yet. Perhaps after many eons most of the planets
do become chaotic. But we don't know for sure.

What we do know is that under very small perturbation to a Hamiltonian system of
uncoupled oscillators most of the classical quasiperiodic orbits still survive. That means
if you randomly pick an initial setup, the chance of your getting one of those regular,
well-behaved orbits is high, but there is always a small, but non-zero, chance that the
resulting orbit is chaotic. This is a non-trivial assertion, and its proof involves a very
difficult mathematical theorem - the celebrated KAM theorem, after the three famous
mathematicians: Andrei Kolmogorov, Vladimir Arnold, and Jurgen Moser [14, 2, 281.
The tori on which these surviving quasiperiodic orbits live are often called KAM tori.

The KAM theorem, however, does not give us the whole story. For one thing it does
not tell us what happens to the resonant surfaces, i.e., those tori inhabited by orbits
that are combinations of commensurate periods. Do these "secondary" periodic orbits
survive?

I will come back to this question later in Chapter 4 and Chapter 5. For now it
suffices to say at least one pair of periodic orbits survive on each resonant surface. One
of these periodic orbits is stable, and the other is unstable. The stable periodic orbit
is itself wrapped around by quasiperiodic orbits. The structure around these stable
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secondary periodic orbit resembles that around the primary periodic orbit: a kind of self-
similarity. As a result we have secondary tori, which are the remnants of the breaking up
of the resonant surfaces, winding around the primary torus. In between these secondary
tori are tangled, chaotic orbits, known as homoclinic orbits, which connect up the

unstable periodic orbit. The real picture is extremely complicated: all these periodic,
quasiperiodic, and chaotic orbits are completely intertwined and mixed up (Fig. 3.2).

What orbits look like on the Poincar6 section

The modern picture that describes the phase space of two coupled oscillators is ex-
ceedingly complicated. It is very hard to visualize these three-dimensional structures
winding around in space. We will see the Poincare section gives the simplification that
we need to get a handle on this problem.

Periodic, quasiperiodic, secondary periodic, homoclinic, and chaotic orbits - these
form the complete list of orbits possible in Hamiltonian systems. What do they look like
on a Poincari section near some periodic orbit?

A periodic orbit is easy. If it goes around the torus once before it comes back to
the exact starting point, then it corresponds to a single point on the section. We call
this point a fixed point of the Poincari mapping. The point is called "fixed" because
as far as the mapping is concerned the point is unchanged even the periodic orbit itself
is moving continuously all the time. If the periodic orbit goes around n times before
it comes back to the same starting point, then it corresponds to a set of n points on

the section. These n points are called periodic points, or a periodic orbit, of the
Poincar6 mapping. Note it may be a little confusing to use the term "periodic orbit"
to refer to both the actual continuous periodic orbit in the phase space, and the set of
isolated points that appear on the section. Anyway, the terminology is quite established
in the dynamics literature. The periodic points corresponding to a stable periodic orbit
are called elliptic points; the unstable ones are called hyperbolic.

Next let's turn to a quasiperiodic orbit. Remember a quasiperiodic orbit is an orbit
that winds densely around the surface of a torus. On the section, it appears as a circle.

More generally, a nested sequence of tori will show up as a nested sequence of concentric

circles on the section. Again, mathematicians give these circles the same name as their
continuous counterpart: quasiperiodic orbits or almost-periodic orbits. Yet another

name is KAM curves, after the mathematicians who proved the existence of these orbits.
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Figure 3.2: Upper: What really happens near a typical periodic orbit: the Vague Attrac-
tor of Kolznogorov. Only some of the clasical quaiperiodic orbits survive. Elsewhere,
homodinic orbits wind between resonance islands. (From: Abraham and Maraden 1978).
Lower: Poincare's schematic picture of orbits on a Poincard section (first drawn by V.
Melaikov).
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The third category is the secondary periodic orbits and quasiperiodic orbits around
them. They appear as island chains on the section. The center of each island corre-
sponds to one of the periodic points. Concentric circles around center are the quasiperi-
odic orbits.

Homocinic orbits belong to the fourth category. A homoclinic orbit is a special type
of chaotic orbit. It is chaotic because it does not stay on the surface of one torus. It is
special because unlike a typical chaotic orbit it is confined to a small portion of phase
space bounded by KAM tori. What this means is that even the motion of the orbit is
not completely predictable, it can always be found in a limited region of the phase space.
On the Poincari section, it appears as a curve connecting up the hyperbolic periodic
points. It is called a homoclinic orbit or sometimes a separatrix, by analogy with the
separatrix of a one-dimensional pendulum.

The fifth category is the chaotic orbits. They are orbits that wander freely in a large
region of phase space. On the section, they appear as points hopping around at random
from one position to another. So stippled regions on the section indicate chaotic motion.

One final type of motion completes the list: unbounded motion. Orbits that are not
confined in any finite volume of phase space are escape orbits. For an example, think
of a meteor flying by the Earth and never comes back. On the Poincari section, an
escape orbit is a set of points that will eventually leave the section under the action of
the Poincar6 mapping.

Problems in recognizing the type of orbit

Now that we have enumerated all the possible types of orbits as they appear on the
Poincar6 section, we should give precise geometrical criteria to characterize them. But
it is difficult to come up with such criteria. There are two reasons for this. The first
reason is that the distinction between orbit types depends on the behavior of an orbit
in the asymptotic, infinite time limit. For instance, on the surface of section, a periodic
orbit is defined as an orbit that is a superposition of commensurate frequencies; it closes
on itself after a finite number of times around the torus. A quasiperiodic orbit is one
obtained from incommensurate frequencies; it covers a topological circle densely. But
this distinction between periodic and quasiperiodic orbit is a property of an infinite time
limit. In other words, finite orbit segments are all topologically similar. Periodic orbits
that have long period tend to cover a topological circle quite well, and they are therefore
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indistinguishable from a quasiperioic orbit if we just look at a finite number of iterates
on the surface of section.

The second reason has to do with the problem of finite precision computer arithmetic.
Round-off errors will prevent us from following an orbit exactly. So, for instance, we may
see the initial segment of an orbit seem to fill a topological circle, but after a while the
iterates spread. What appears as a smooth thin curve before may turn into a "fat" curve
made up by iterates from several nearby orbits.

Because of these difficulties, it is clear that KAM cannot prove that a given orbit is
an island chain or a separatrix or what not just by looking at a finite number of iterates.
Rather, it provides some numerical evidence about the type of an orbit. With this caveat
given, I shall start the discussion by first enumerating the tasks that arise in classifying
orbits.

3.1.1 Determining topological dimension

When are dots perceived as lying on a single continuous curve as shown in Fig. 3.3a?.
Under what conditions do we perceive them as occupying a region in the two-dimensional
space as in Fig. 3.3b? Answering these questions is important because it gives KAM a
method to distinguish a chaotic orbit.

3.1.2 Sequencing points on a curve

We tend to perceive the dot pattern in Fig. 3.4a as forming the boundary of a slightly
distorted triangle. This organization dominates other possible organizations such as
those shown in Fig. 3.4b and Fig. 3.4c. To see the dots as an outline of an object, we
must be able to see these dots as connected in an ordered sequence. The computational
question is this: given a set of dots that appear to lie on a curve, how can the dots be
ordered? Ordering dots in a sequence is useful because it allows us to extract geometric
information, such as curvature, of the object boundary.

3.1.3 Detecting clusters

Looking at Fig. 3.5, we can see the dots fall naturally into 4 distinct clusters. How can
the cluster structure in a dot pattern be detected? This question is related to the problem
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(a) The points lie on a smooth closed curve. (b) The points occupy a region.

Figure 3.3: Problem of Topological Dimension: Do the points lie on a curve or cover a
region?
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(a) Dominant perceptual organization

(b) Non-dominant organization (c) Non-dominant organization

Figure 3.4: Problem of Sequencing Points: How are the dots ordered?
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of identifying the number of islands in an island chain.

1.0

I.5

-1 . -6.5 6. .5 1.6

Figure 3.5: Problem of Clustering - How many dusters are there?

3.1.4 Counting loops of a separatrix

In Fig. 3.6, there is no clear separation between the loops of the separatrix. Yet we would
like to be told that there are 5 clusters connected at small "necks". The number of loops
of a separatrix is an important piece of information because it gives the period of the
periodic orbit that it encloses.

3.1.5 Deciding when steady state is reached

How many iterates are sufficient for revealing the geometric structure of an orbit? Fig. 3.7
illustrates the effects of the number of iterates on what we perceive. The first 192 iterates
of the orbit seem to lie on a single curve. It may lead us to misidentify this dot pattern as
a quasiperiodic orbit. Increasing the sample size to 256 iterates, we still perceive a curve.
At 320 iterates, we begin to see small branches coming out from the 5 "cusped" portions
of the curve. The separatrix does not fully reveal itself until 384 iterates. Frequently,
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Figure 3.6: Problem of Loop Counting - How many loops are there?

the initial orbit segment of an separatrix can look like a quasiperiodic orbit up to several
thousand iterates. So there is a genuine question of how the "steady state" of an orbit
is detected.

Another example is provided by the 4-island chain in Fig. 3.8. Looking at the first
128 iterates, we see just 4 disconnected short line segments. In this case, it takes at least
512 iterates for us to dearly perceive 4 distinct closed curves.

3.2 CORE IDEA: SHAPE FROM MINIMAL SPANNING TREES

What is perceptual grouping?

To perceive a structure in a dot pattern, the perceiver must impose some organization
on the dots. In other words, individual isolated dots must be aggregated into larger
structures. But given a set of distinct points on the plane, there are many ways to group
them. So what are the principles governing dot grouping? When are two dots neighbors
of each other? When do these neighboring dots aggregate into lines? Closed curves?
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(a) Showing 192 iterates (b) Showing 256 iterates

(c) Showing 320 iterates (d) Showing 384 iterates

Figure 3.7: Problem of Steady State: How many iterates does it take to reveal a complete
separatrix?

The objective of a grouping process is to partition the dots into groups such that
members within one group we "similar" in some sense, but members belonging to differ-
ent groups an "diuimilar". A successful grouping can greatly reduce the combinatorics
of the search space when the groups are further organized into higher level structures, and
when these structures are matched against idealized models of what we wish to detect.

In this section we will formulate three constraints - soundness, connectivity, and sep-
aration - for grouping dots. These constraints are not sufficient to define a mathematical
operation, but they will narrow down the class of admissible grouping processes. The
goal here is to develop a domain-independent grouping method that gives meaningful
structurings of dot patterns and facilitates the subsequent semantic interpretation of an
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(a) 128 iterates reveal 4 short lines. (b) 512 iterates reveal the entire island chain.

Figure 3.8: Problem of Steady State: How many iterates does it take to reveal the island

structure?

orbit.

Perhaps the chief contribution of the Gestalt psychologists, who studied human per-
ception of forms in the twenties, is to provide a set of empirical "laws" of organization
describing the various factors that influence the tendency for a collection of dots to be
grouped together. For example, the law of prozimity states that dots that are close to-
gether tend to be g!ouped together. The law of good continuation suggests that dots are
grouped together in such a way to make the fewest separate (non-continuous) contours.
The list of organizational laws is quite long, involving laws such as those of symmetry,
area, and common fate [121.

The Gestalt laws, however, are at best suggestive, and they remain only ad hoc
demonstrations as long as they are not formulated in operational terms. We need, for
instance, to be more precise about what we mean by proximity, good continuation, sym-
metry, etc. We must also consider the combined effects of various grouping factors when
several of them are acting in concert or in conflict on any given dot pattern.

As Mar [17] pointed point, the Gestalt movement suffered because the Gestaltists
lacked the idea of a computational process. They thought of their organization laws as
physical laws. But perhaps a more useful perspective is to treat them as constraints
- properties that a grouping process must satisfy. If enough of these constraints are
isolated, one can uniquely characterize a grouping process.
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A grouping process groups (or clusters) objects according to the similarity between
pairs of objects. Characterizing a grouping process requires the specification of three

factors:

* a measurement space in which the objects are described

" a similarity relation between two objects

• a clustering method based on the similarity relation

In the literature on clustering, an object is usually described by a m-dimensional
vector in some measurement (or feature) space, and the proximity between any two

objects is defined by some metric relation defined on the measurement space. With dots

as the primitive object, the measurement space is extremely simple: each dot is identified

by its position in the Euclidean plane .

When do we say two dots are similar? One may say two dots are similar if they are
grouped into the same cluster. This definition, however, does not help much because
we cannot establish similarity between points until we have computed the grouping, but
in order to compute the grouping we need some similarity relations. So either we can
come up with a powerful definition of similarity that gives us the grouping right away,
or we have to settle on a similarity relation that gives a good approximation to group

membership. How good a similarity relation is is measured by the fraction of similar
points that are eventually clustered into the same group.

The remainder of this section argues that a geometric structure, the minimal spanning
tree, is a basis for defining a good similarity relation.

Minimal Spanning Trees

Given a set of points in the plane, a minimal spanning tree (MST, for short) is a
tree of minimum total length whose vertices are the given points. The MST is a useful
tool for solving some common network optimizations problems such as the problem of

finding the minimum amount of cable required to connect up n communication centers.

I We will later consider dots on the surface of a torus, but the essential ideas in both cases are the

same.
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Another useful feature of a MST is that it gives a definition of when two points are
close to each other. Given n points, we say two points are adjacent or neighbors if

there is an edge connecting them in the MST for the n points.

Let N(p) denote the set of all neighbors of a point p. Then the adjacency relation q

E N(p) has the following properties:

e It is non-reflexive, i.e., p N(p).

* It is symmetric, i.e., q E N(p) if and only if p E N(q).

* If q is the nearest point to p according to the distance metric of the measurement
space (i.e. distance(p,q) = min.,Ess_{p} distance(p, r)), then q E N(p).

* It is invariant under similarity transformations (translation, rotation, and uniform
scaling of the coordinate axes).

These four properties are also satisfied by three other well-known graph-theoretical
definitions of neighbor [24]: the relative neighborhood graph (RNG), Gabriel graph (GG),
and Delaunay triangulation (DT). Roughly speaking, these different graphical structures
may be thought of as different ways of defining a region of influence between two nodes of
the graph such that the two nodes are considered neighbors whenever all the remaining
nodes lie outside this region of influence. For example, the RNG of a set S is defined as
follows: there is an edge between p and q in S if and only if

d(p,q) _< min max(d(p,r),d(r,q))?*P,q

That means, an edge between p and q exists if and only if the region obtained by inter-
secting the disks of radius length (;) centered at p and q respectively contains no point
of S in its interior.

It turns out the MST and these graphs are closely related to each other. Specifically,
it can be shown that they form an increasing chain (see [30]):

MST C RNG C GG C DT

In other words, MST is a subgraph of RNG, RNG is a subgraph of GG, and GG is a
subgraph of DT.

At this level of analysis, there is not enough constraint to narrow down our choice of an

adjacency definition. However, we will see shortly that the adjacency definition induced
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by the MST is consistent with certain natural constraints on the grouping process. To
state these constraints, we need some concepts from graph theory.

The points of a dot pattern and their neighbors can be represented by a weighted
graph G - called the adjacency graph - consisting of a finite set of nodes and links.
The nodes of G are the points of the dot pattern. A link (or an edge) exists between two
distinct nodes if and only if their corresponding points are neighbors. Each link joining
two nodes has a value called its weight. The numerical value of a link's weight is taken
to be the distance between the corresponding points in the measure space. Graphically,
it is convenient to use the length of a link to indicate its weight. A path is an alternating
sequence of nodes and links such that all the nodes in the sequence are distinct. A graph
is connected if any two nodes are joined by a path.

One more remark about terminology before we proceed. In what follows, I frequently
refer to three different domains: (1) the Geometry World whose objects are points,
curves, clusters, and dot pattern, (2) the Dynamics World which provides a semantic
interpretation for the geometrical objects, and (3) the Graph World which provides an
abstract symbolic representation of the relevant geometrical properties of a dot pattern.
Each world has its own descriptive language. To avoid possible confusion, I list the
correspondence between terms of the three different languages below:

DYNAMICS GEOMETRY GRAPH
iterate point node

neighbor link (or edge)
orbit dot pattern graph (or tree)

Three constraints

How does the adjacency graph reflect the grouping structures of the dot pattern
that it represents? In other words, what are the properties of the adjacency graph that
correspond to signficant perceptual structures?

If a group of points seems to fall on a smooth curve, then the ordering of points along
the curve induces a natural adjacency relation among the points. What does this mean?

Intuitively, we can think of a curve as the path traced out by a particle as it changes
its position with time. Using some concepts from topology, we say a curve in R2 is a
continuous function mapping the closed unit interval [0, 1] into R2. However, a curve
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according to this definition can be quite complicated (see Fig. 3.9). If we are interested
in perceptually simple curves, it is necessary to restrict the class of curves we study. In
particular, to rule out curves that cross themselves, we define a simple type of curve. We
say that a curve C is a Jordan curve 2 if it is topologically equivalent to the closed unit
interval [0, 1] (Fig. 3.9). In other words, there exists a homeomorphism f: [0, 1] -- C. f
is often called the parameterization of C.

f(t)

le Jordan Curve, not closed

0 t

/ 

g(t)

non-Jordan curve, not closed

L- t
0 1

Figure 3.9: A Jordan curve is topologically equivalent to the dosed unit interval [0,1].

We discretise the continuum of points in the unit interval by a finite number of isolated
points. Since these points are ordered on the real line, we label them - left to right -
with integers from 1 to m. A natural adjacency relation N(k) can then be defined as
follows:

1. N(1)={2}

2. N(m)= { m-1 }
21n the literature, a Jordan curve is sometimes taken to mean a imple closed curve, a curve that is

topologically equivalent to the unit circle.
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3. N(k) = { k-1, k+I }, for k # 1 or m.

What this means is that any isolated point, except the two endpoints, has two neigh-
bors - one on its left and the other right. Via homeomorphism, we can extend this
adjacency relation to any Jordan curve. We say a adjacency graph is sound if it pre-
serves the natural adjacency relationships for a Jordan curve. This is the content of the
soundness constraint:

Constraint 1 (Soundness) If a dot pattern S is perceived as a smooth curve, then its
adjacency graph G should preserve the adjacency relationships implied by a parameteri-
zation of the curve.

Now that we understand what the soundness constraint is, let us see why the con-
straint is useful. Consider the dot pattern in Fig. 3.10. The dots clearly indicate the
letter 'G'. When we compare the MST and the RNG representation of the dots, we no-
tice an important difference. The MST representation is sound; it captures the dominant
perceptual structure of the dot pattern, using a minimum number of edges. The RNG
representation, on the other hand, is not sound because of the extra edge that "closes"
the figure; it does not faithfully represent the topology of the figure 'G'. The same prob-
lem arises in Gabriel graph and Delaunay triangulation since they are supersets of the
RNG.

Here is the second constraint, which tries to capture the idea that a cluster should in
some sense be "cohesive":

Constraint 2 (Connectivity) If S is perceived as a single cluster, G should be con-
nected.

The following theorem by Zahn [33] implies that the MST satisfies the connectedness
criterion. We first define the distance between two sets P and Q of points, d(P,Q), as
the shortest distance between two points p and q such that p E P and q E Q. Zahn's
theorem is as follows:

Theorem 1 Let G be a graph and S be the nodes of G. If C is a non-empty subset
of S with the property that d(PQ) < d(C,S-C) for all partitions (PQ) of C, then the
restriction of any MST to the nodes of C forms a connected subiree of the MST.
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00.

(a) A dot pattern indicating the alphabet IG

(b) Minimal Spanning Tree (c) Relative Neighborhood Graph
of po ut in (a) of points In (a)

Figure 3.10: Soundness Constraint. The MST is sound because it captures the structure
of the alphabet 'G', but the RNG is not. (Adapted from Fig. 8 of Toussaint.)

We illustrate the theorem in Fig. 3.11. The dot pattern consists of 17 points. The two
clusters, C and S-C, indicated by the dotted circles satisfies the hypothesis of theorem 1.
This fact can be verified by noting that any partition (P,Q) of C is such that d(P,Q) < 22,
and d(C,S-C) = 78 > 22. The theorem implies that the nodes of C will be a connected
subtree. Reversing the role of the partitions C and S-C, we can show that the nodes of
S-C also form a connected subtree. So, we can see that the MST has the nice property
that it does not break up real dusters. This property, however, is not helpful unless we
have a way of detecting which subtrees of the MST do in fact represent real clusters of
the dot pattern. For this, we come to our third and final constraint.

The final constraint, the separation constraint, is motivated by the dot patterns
in Fig. 3.12. "

Constraint 3 (Separation) Suppose S is perceived as n distinct clusters, Cl,... C,

3 This example is due to Zahn [33].
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Figure 3.11: Connectedness Constraint. The MST representation of a set of 17 points is
shown. The subgraphs C and S-C are connected subtrees since they both satisfy theorem
1. (From Zahn 1971))

Let the aubgraph. of G corresponding to these clusters be SG,,..., SG,. Then,

1. The nodes of the subgraph., SGI,..., SG,, form a partition of the nodes of G,
i.e., the nodes of the SGC 's are nonempty, mutually disjoint, and totally ezhaustive.

2. The SGi 's are either isolated from each other (i.e., there is no path connecting SG
and SGj if i j) or well-separated (i.e., the inks connecting SG and SGj, i # j,
are significantly longer than the nearby link. within SGi or SG).

The two dusters in Fig. 3.12a-1 are homogeneous in the sense that the distance
between a point to its nearest neighbor is approximately the same for every point in a
cluster. These two dusters are also well-separated because the inter-cluster distance
D is much larger than the average within-cluster nearest-neighbor distance d. This ob-
servation gives a simple clustering method: connect any pair of points whose distance
is less than a threshold value depending on d. For instance, the graph in Fig. 3.12a-2
is obtained by using a threshold of d + 2a, where a is the standard deviation of the
set of nearest-neighbor distances. As we can see, the graph has two isolated connected
subgraphs corresponding to the two clusters that we intuitively perceive.
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Figure 3.12: Separation Constraint: Two clusters are wefl.$eparated if the inter-cluster
distance D is si icantly larger than the nearby within-cluster distances d.

The simple method of comparing inter-cluster with within-cluster distances, however,
does not quite work for nonhomogeneous clusters such as those in Fig. 3.12b-1. Here,
although the inter-cluster distance D is greater than the nearby within-cluster distance d,

it is less tha some within-cluster distance d' of the upper cluster (Fig. 3.12b-2). We can
resuscitate the simple method by restricting the distance comparison to a local region
around the inter-cluster edge, i.e., the statistics d and a, are taken locally. As an example,
the graph in Fig. 3.12b-2 is generated by computing the edge length statistics based on the
3-nearest neighbors of each point. Once again, we have two isolated connected subgraphs
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because the inter-cluster edge is significantly longer than its nearby edges.

Upshot

This section defined an adjacency relation between two points based on MST. The
adjacency relation is non-reflexive, symmetric, non-empty, and invariant under the sim-
ilarity transformations. I also formulate three constraints - soundness, connectedness,
and separation - that are motivated by the desire to have a faithful graphical repre-
sentation of the grouping structure of a dot pattern. Finally I show that the proposed
adjacency relation satisfies all three constraints. In the next section, we will see how

shape information are extracted from the MST representation.

3.3 SHAPE FROM MINIMAL SPANNING TREE

As discussed in section 3.1, in order to direct the course of its numerical experiments,
KAM must be able to interpret what it sees. In particular, KAM must be able to
recognize the relevant geometrical properties of a collection of iterates. Orbit recognition
consists of the following five tasks:

1. to tell when the iterates seem to lie on a curve

2. to detect clusters

3. to count the number of loops of a separatrix

4. to identify a chaotic orbit

5. to determine when an orbit has reached a "steady state"

This section shows how these tasks can be accomplished by examining the MST repre-

sentation of a set of iterates. To begin, we need some terminologies from graph theory.

A cycle is a path whose start and end nodes are the same. A tree is a connected

graph with no cycles. A spanning tree of a connected graph G is a tree that contains

all the nodes of G. The weight of a tree is the sum of the lengths of its links. A minimal

spanning tree is a spanning tree whose weight is minimum among all the spanning trees
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of G. The degree of a node p, deg p, of a minimal spanning tree T is the number of
links incident with p. A branch at a node p of T is a maximal ' subtree containing p
as an endpoint. Thus, the number of branches at p is also equal to deg p. A node p is a
branching node if deg p > 2. A node p is a terminal node if deg p = 1. The distance
d(p,q) between two nodes p and q of T is the length of the shortest path joining them.
A shortest p-q path is often called a geodesic. A diameter diam(T) of a tree T is any
longest geodesic.

3.3.1 Determining when iterates appear as a closed curve

Let S be a set of iterates (z 1,y1 ),... (z,,,Y), and MST(S) be the minimal spanning tree
of S. If MST(S) has no branching nodes, then we may generate a plane curve interpolating
S in terms of a parameter u as follows:

X X z(i)
y = ~u

A natural choice for the parameter u is the path length with respect to a terminal node
of MST(S). Since a tree has no cycles, the parametric curve so generated from MST(S)
is a Jordan curve. We thus conclude that if the MST representing the initial segment of
an orbit has no node with degree greater than two, i.e., no branching node, then there
exists a Jordan curve interpolating the iterates of the orbit segment.

To identify a quasiperiodic orbit, we need a stronger conclusion, namely, whether the
Jordan curve is closed. But this is simple. Since MST(S) for a Jordan curve has only
two terminal nodes, all we need to do is to note the distance between these two terminal
nodes. If, in addition to having no branching node, MST(S) has its two terminal nodes
close to each other on the Euclidean plane, then we conclude S lies on a closed Jordan
curve.

There is an extra bonus if MST(S) generates a parametric curve. The parameter u,
which is taken to be the path length, gives an ordered sequence of the iterates. This
sequencing is going to be useful for extracting further shape information from the curve
such as the locations of extreme curvature along the curve.

4 A graph is maxamal if it is not contained in any larger graph of the same sort.
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3.3.2 Partitioning iterates into distinct clusters

The iterates of an island chain fall into distinct islands. KAM must be able to determine
the number of islands because this number gives the period of the enclosing periodic
orbit. The question is how to detect clustering structure in the minimal spanning tree.

A MST, by definition, is a connected graph; it does not force "breaks" in the repre-
sentation even when there are real gaps among the points in the dot pattern. However, as
we have seen the MST edges within a cluster tend to be short, while edges joining clusters
are in general much longer than nearby within-cluster edges. If these longer intercluster

edges can be detected, then we have a way to partition the dot pattern because deleting
these long edges breaks up the MST into several subtrees each of which corresponds to
a cluster.

Following a suggestion by Zahn [33], we call a MST edge inconsistent if it is sig-
nificantly longer than nearby edges. There are several ways to define an inconsistent
edge. One reasonable criterion is to compare an edge's length W with the average m and
standard deviation a of nearby edges. For example, the following definition is used in

KAM:

Definition 1 An edge with length W is inconsistent if W > m + 2a.

In other words, an edge is inconsistent if its length exceeds the average of the nearby
edge lengths by two standard deviations.

One question remains: Which are the nearby edges? Let e be an edge joining nodes
p and q. The idea is that nearby edges are those that are within certain distance from
e. The following criterion is chosen empirically, and seems to give correct results:

Definition 2 The nearby edges of e are edges that lie on a path through either p or q
containing 8 or fewer edges.

3.3.3 Counting the number of loops of a separatrix

Partitioning the points of a separatrix is a difficult clustering problem because the clusters
are not well-separated. According to the clustering method of deleting inconsistent edges,
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a separatrix, such as the one shown in Fig. 3.13a, will appear as a single cluster. But we
can see the separatrix as consisting of five loops connecting at the small "necks" around
the hyperbolic points (see the boxed region in Fig. 3.13a). It turns out the geometry of
the points around these necks gives us a clue to solving this clustering problem.
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(a) A separatrix with 800 iterates (b) Magnifying the boxed region in (a):
two branches of a hyperbolic segment
enclosed by the two rectangles
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(c) A loop of the separatrix inside (d) Combining two branches from adjacent
the boxed region hyperbolic segments to form a loop

Figure 3.13: Hyperbolic segments of a separatrix

Notice that the points on the two sides of a neck have a distinctive geometry, namely,
they seem to le on the two branches of a hyperbola. Let me call this arrangement a
hyperbolic segment (Fig. 3.13b). The 5-loop separatrix can then be thought of as
consisting of 5 such hyperbolic segments. So if we can detect a hyperbolic segment,
we will have a method to partition the points. Specifically, for two adjacent hyperbolic
segments, we group together points that lie on the two nearby hyperbolic branches, one
from each of the hyperbolic segments (Fig. 3.13c,d).
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But how is a hyperbolic segment recognized? We will see once again the MST repre-
sentation contains sufficient information to answer this question. Before explaining the
recognition method, let me recall the definition of a diameter of a tree: A diameter
is any longest geodesic. If the MST has a "linear structure", i.e., it has no branching
node, then the diameter is unique and every point belongs to it. For a dot pattern
covering a region, its corresponding MST in general has many branching nodes along a
diameter. A separatrix is sort of intermediate between a smooth one-dimensional curve
and a two-dimensional region: its MST has branching nodes, but these branching nodes
have distinctive structures. In particular, along a diameter of the MST representing a
separatrix, there are visually prominent (long) branches. Moreover, these branches come
in pairs (see Fig. 3.13b).

To capture the branching structure of a diameter, it is useful to compute the branch-
ing histogram, which gives, for each node on the diameter, the length (in terms of the
number of edges) of the longest branch from that node. For example, the branching
histogram for a MST that has no branching node is just a whole bunch of zeroes. In
general, a long run of zeros in the branching histogram suggests a line structure, while
peaks in the histogram indicates long branching from the diameter. Small numbers in
the histogram, such as 1 or 2, mean the presence of short branches.

Instead of looking at a branching histogram, which is really a long sequence of num-
bers, it is more useful to extract qualitative information from it and represent symboli-
cally the branching structure of the MST. The language used to describe the branching
structure turns out to be quite simple; it consists of all finite sequences of three symbols
- LINE, SHORT-LINE, and BRANCH. Informally, a LINE denotes a segment of the
diameter such that none of the nodes in the segment has a branching depth greater than
2. A SHORT-LINE is a LINE such that the path length of the segment is smaller than
a certain threshold. A BRANCH denotes a singleton diameter node whose branching
depth is greater than 2.

Let us look at an example. Fig. 3.14a shows the MST representation of a separatrix
with 640 iterates. The diameter of the MST consists of 438 nodes which are denoted by
the large solid dots. The branching histogram - a sequence of 640 numbers - is shown in
Fig. 3.14b. The branching structure is represented symbolically by a compact sequence
of symbols consisting of 21 symbols. Note that there are 10 BRANCHES in the symbolic
description and that these branches come in pairs in the sense that there is a short line
between two branches in a pair, while the pairs themselves are well-separated from each
other.
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(a) The MST of 640 iterates: e diameter nodes; a =non-diameter node.

Trying 640 iterates...
Total nodes a W4. Number of diameter nodes a 438. Dranching nodes m 44.
Brancbing-blstogpeia
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Diameter structure is ( LINZ BRANCH SNOIT-LINI DRANCE LINZ DRANCH SNORT-LinI DUNCH
Lin BRANCE SNORT-LINZ BRANCH LinI BUNCH SNORT-LIU BRANCE
Lin DRANCH SNOIT-LINE DRANCH LINE).

Percentage of sodes on maim stem ad primary branches a 96.593751.
Percentage of branch nodes am diameter a 9.589043%.
Clusters 0 S. Incamalatent edges a 0. Loops a 6.

(b) Branching histogram and symbolic description of the MST

Figure 3.14: A symbolic description of the MST of a 640-iterate separatrix is derived
from the branching histogram. The diameter of a separatrix has & hyperbolic structure.
Note that a large number (such as 14, 15, etc. in this exam., in the histogram indicates
a long branch. 57



Let's define more precisely what a hyperbolic structure is. A hyperbolic segment
is a sequence of 4 symbols - "LINE BRANCH SHORT-LINE BRANCH". A hyperbolic
structure is a finite sequence of hyperbolic segments.

HYPERBOLIC-SEGMENT = "LINE BRANCH SHORT-LINE BRANCH"
HYPERBOLIC-STRUCTURE = { HYPERBOLIC-SEGMENT }"

Finally, any MST whose branching structure is a hyperbolic structure, possibly with
an optional LINE symbol in the end, is identified as the representation of a separatrix.
The number of loops of the separatrix is the same as the number of hyperbolic segments
in the branching structue.

3.3.4 Identifying Chaotic Orbits

In the previous three sections, we have seen how the clustering and branching structure
of the MST representation of a dot pattern allow us to recognize a quasiperiodic orbit,
an island chain, and a separatrix. The purpose of this section is to show how a chaotic
orbit is positively identified by an additional geometric property that can be extracted
from its MST representation - the percentage of primary nodes.

We'll begin with some definitions. Suppose G is a MST and diam(G) is its diameter.
A diameter node of G is a node that lies on diam(G). A diameter branch node
is a branching node that lies on diam(G). It is indicated by the BRANCH symbol in
the symbolic description of the branching structure. A primary branch is any longest
branch rooted at a diameter branch node. A primary branch node is a node that
belongs to some primary branch. Finally, a primary node is either a diameter node or
a primary branching node.

The idea of a primary node is motivated by the rich branching of a MST representing
a chaotic orbit. Compare the branching structure of the three different types of orbits '
in Fig. 3.15. All the nodes of an ifland chain are either diameter nodes or nodes that lie
on the main branches coming out of the diameter. For a separatrix, almost all nodes are
primary with the exception of a few nodes usually located near the hyperbolic points.
Incidentally, the non-primary nodes are too small to be seen in Fig. 3.15b-2. And this

S1 have not included a quasiperiodic orbit in the picture because it is clear that all its nodes are
diameter nodes and hence ae primary.
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is precisely the point. For if we contrast Fig. 3.15b-2 with Fig. 3.15c-2, we notice the
prominence and abundance of non-primary nodes (nodes that are not covered by black

dots or open circles) for the chaotic orbit. In the particular chaotic orbit shown, roughly

40% of all the nodes are non-primary.

With primary nodes we have a simple rule for recognizing a chaotic orbit: If the

percentage of the primary nodes of a MST is less than certain threshold (say, 80%),

then we conclude that the MST represents a chaotic orbit. Note that all the nodes of a

quasiperiodic orbit or an island chain are primary. For a separatrix, most of its nodes

are primary; the few non-primary nodes are usually located in a small region around the

hyperbolic points.

3.3.5 Determining steady state

The problem of steady state is the problem of deciding how many iterates are needed for

identifying an orbit. There is a tradeoff involved. In the limit of using a very large number

of iterates, a reliable classification is achieved because the probability of missing part of

the orbit structure goes to zero. On the other hand, a classifying procedure operating on

a large number of iterates tends to be prohibitively expensive. So, a practical procedure

should use the smallest number of iterates consistent with certain specified reliability

criterion.

With the MST representation of the iterates, a straightforward reliability criterion is

the stability of the symbolic description of the branching structure of the MST. For a given

set of iterates, we compute the branching description, i.e., a list of symbolic descriptors

(such as LINE, SHORT-LINE, or BRANCH) that describe the branching structure of

the diameter (Fig. 3.14b) . Then we add more iterates to the set, compute a new

branching description, and check if the two branching descriptions are the same. If the

branching description remains invariant, we assume steady state is reached. Otherwise,

we progressively enlarge the set of iterates until there is no further change in the branching

structure.

Of course, there must be a lower bound on the number of iterates to be added at

each stage. If we add just a few iterates to a large set of iterates, we certainly do not

expect any change in the branching structure. In my experiments, I set the lower bound

to a fixed percentage (say 25%) of the current number of iterates in the set. Suppose,

for instance, there are 1000 iterates in the set. Then at least 250 new iterates should be

added in the next stage. This technique turns out to work quite well as we will see later.
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(a-2) A 5-island chain with 384 iterates. (a-2) Number of non-primary nodes - 0.

Percentage of primary nodes - 100%.

(b-) A separatrix with 800 iterates. (b-2) Number of non-primary nodes . 65.
Percentage of primary nodes = 92%.

(c-i) A chaotic orbit with 34 iterates. (c-2) Number of non-primary nodes = 150.
Percentage of primary nodes - 61%.

Figure 3.15: A chaotic orbit can be distinguished from other orbits by the smaller per-
centage of primary nodes. Primary nodes are indicated by black dots (9 = diameter

nodes) or open cirdes (o = primary branch nodes).
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3.4 IMPLEMENTATION

3.4.1 Computing the Minimal Spanning Tree

The minimal spanning tree (MST) comes up frequently in network optimization problems.
For example, if one desires to build a communication system among n cities requiring
interconnecting cables, then the MST results in a network of minimum cost (assuming
cost is proportional to the length of the cable used).

Unlike many other path minimization problems - such as the traveling salesman
problem, the Steiner tree problem - the MST can be solved by an efficient algorithm.
One such algorithm was devised by Prim [25]. The idea is quite simple: one starts
with any arbitrary node and then branches out from it by choosing edges according to a
certain strategy. Specifically, one partitions the nodes of the graph into two disjoint sets,
U and V. Initially, U contains only an arbitrary node pi, and V the remaining nodes.
The next step is to choose a node p2 from V such that the distance between p, and p,
is the minimum among all edges with one endpoint in U and the other endpoint in V.
Enlarge U by joining p2 to pi, and remove p from V. One iteratively enlarges U, each
time choosing a node from V that is closest to the set U. The algorithm terminates when
U contains all the nodes. It can be easily shown that Prim's algorithm takes O(n 2 ) time
where n is the number of nodes.

Prim's algorithm is optimal for a general weighted graph, a graph whose edge weights
are unrestricted, but is suboptimal if the graph has a geometric structure. Specifically,
Shamos [24] has shown that if one considers points in the Euclidean plane, the MST
can be constructed in O(n log n) time. This result should not be surprising because the
metric properties of the Euclidean plane give more constraints to the Euclidean MST
problem. Unfortunately, the time complexity is an asymptotic result. Almost all the
known O(n log n) methods require the construction of a Voronoi Diagram of the given
point set as an intermediate step. My own experimentation with these optimal methods
indicates the crossover point is well over several thousand points. So, for the purpose of
orbit identification, I still rely on the simple Prim's algorithm.

3.4.2 Computing the diameter of MST

Recall a diameter of a MST is any longest geodesic (section 3.3). A brute-force approach
to compute a diameter - for example, by finding all possible geodesics and selecting the
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longest one - would be extremely inefficient. But the definition of diameter implies that
its endpoints must be terminal nodes (otherwise, we can extend the geodesic to obtain
a longer geodesic, thus violating that it is a diameter). However, even computing the
geodesics between all possible pairs of MST terminal nodes can be quite expensive if the
MST contains many terminal nodes.

Here we need to exploit some domain knowledge to cut down the cost of computation.
For regular orbits, like quasiperiodic orbits or island chains, the number of terminal nodes
is small. So we can afford to compute all the geodesics between terminal nodes. For
chaotic orbits, there are lots of terminal nodes. But in this case it does not really matter
whether we can find the longest geodesic. Any reasonably long geodesic will contain
sufficient branching structure for identifying the orbit type. We will say a geodesic
between two terminal nodes is a near diameter if there is no longer geodesic originating
from either one of the two nodes.

It is straightforward to compute a near diameter. Pick any two terminal nodes.
Compute its geodesic. Walk along the geodesic to check if there are any branches coming
out from the geodesic that will generate a longer path. If so, pick this longer path, and
repeat the above steps. Otherwise, report that the geodesic is a near diameter.

3.4.3 Orbit Classification Rules

We have seen the main ideas behind obtaining the shape of an orbit from its MST
representation in section 3.3. This knowledge is encoded in KAM by 5 orbit classification
rules which are collected in Fig. 3.16. Since the rules are largely self-explanatory, I will
just make two clarifying remarks. The first remark concerns the absence of a "Periodic
Orbit Identification Rule". The problem with periodic orbits is that we almost never
directly observe them in numerical experiments because of round-off errors. Even if we
start the initial state precisely at a periodic point, the trajectory will drift to a nearby
quasiperiodic orbit after several iterations. So, we do not really need to directly recognize
a periodic orbit; rather, its existence and location are inferred from the smallest enclosing
quasiperiodic orbit.

The second remark has to do with the Escape Orbit Identification Rule. The question
is how to decide an orbit is "escaping". KAM is not very smart about this. In the
beginning of an experiment session, KAM asks the user to supply an escape region.
The escape region is usually given as the exterior of a closed and bounded set in the
phase space. An iterate is out of range when it is inside the escape region.
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Orbit Identification Rules

Quasiperiodic Orbit Identification Rule
If (1) MST, has only one cluster,

(2) MST,, has no branching node,
(3) The distance between the initial and final point of the diameter

of MST,, is less than 5% of the total diameter length,
then the orbit must be a QUASIPERIODIC ORBIT.

Island Chain Identification Rule
If (1) MST, has k (> 1) clusters,

(2) Each cluster of MST,, is a quasiperiodic orbit,
then the orbit must be a k-ISLAND-CHAIN.

Separatrix Identification Rule
If (1) MST, has a hyperbolic structure,

(2) MST,, has k (> 1) pairs of hyperbolic branches,
(3) Over 80% of the MST, nodes are primary,

then the orbit must be a k-SEPARATRIX.

Chaotic Orbit Identification Rule
If less than 80% of the MST, nodes are primary,
then the orbit must be a CHAOTIC ORBIT.

Escape Orbit Identification Rule
If any iterate is out of range,
then the orbit must be an ESCAPE ORBIT.

Figure 3.16: Five orbit classification rules. MST,. is the minimal spanning tree con-
structed at stage n.

3.4.4 Orbit Recognition Algorithm

The purpose of the Orbit Recognition Algorithm is to classify a finite orbit segment into
one of the known orbit types. The algorithm takes four inputs: (1) an area-preserving
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map, (2) an initial state, (3) a parameter value, and (4) an escape region. The output is
typically a known orbit type such as QUASIPERIODIC, ISLAND-CHAIN, etc. However,
the algorithm can give up, in the sense that up to a certain threshold number of iterates
it still cannot reliably identify the type of the orbit segment. When the recognition
algorithm gives up, KAM will dispatch to the Phase Space Searching Module, asking for
a new initial state.

The recognition routine is organized into two nested levels. The lower level is the piece
I call the identification routine. This routine implements the aggregate-partition-
classify algorithm. It has three steps:

e It first aggregates a set of iterates into a MST, thus creating the adjacency graph.
Relevant geometrical properties of the MST such as its diameter and the branching
histogram are also computed.

e It then partitions the adjacency graph into clusters by detecting and removing
inconsistent edges of the MST.

* It finally runs the orbit identification rules, trying to detect line structure, hyper-
bolic structure, or line structure within a cluster component.

The identification routine does not make any decision about whether the identifi-
cation result is stable or robust, i.e, whether aggregating a larger set of iterates will
produce the same identification. That decision is encoded in the higher level stability-
control routine. The purpose of the stability control is to achieve some robustness in
the classification result with minimum computational effort. The fundamental task of
the stability-control routine is to arrive at the smallest number of iterates that yield a
stable classification. The routine implements a straightforward technique: iterative per-
turbation. The idea is we start with some initial set So consisting of a small number
of iterates (say, No = 128), and perturb So by adding N0 iterates. Call the larger set
of iterates S1. We can iterate this perturbation process to produce a sequence of larger
sets, S0, S 1 ,S 2 ,... ,S.. The stability-control routine calls the identification routine with
each 5, successively. We terminate the iterative process when the last k members of the
sequence all yield the same orbit class.

In the current implementation, k is chosen to be 2 and there is an upper limit (m = 7)
on the number of iterations. The upper limit is set because the time it takes to compute
the MST of a set of size n grows as O(n 2). If a faster implementation of the MST
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algorithm is available, we can increase m accordingly. The number of iterates added at
each iteration is somewhat arbitrarily chosen as follows. Let Nj be the number of iterates
in Si, and AN be the number of iterates to be added at stage i. Then, we have:

N o = 128

N,+, = Ni + AN,

AM = max(128, xN N

The explicit value of each Ni is listed below:

No IN N2  N 3  N4 INs N6 N7
128 256 384 512 640 800 1000 1250

3.5 EXPERIMENT: MAIN ILLUSTRATION

To illustrate the orbit recognition algorithm, I give an example of how KAM recognizes
a 4-island chain generated by the Henon map with parameter value a = 1.5808 (i.e.,
cos a = -0.01) and initial condition (0.15, 0). The total running time for this experiment
is approximately 9 minutes on a Symbolics. KAM required 640 iterates to classify this
orbit. Note that the number of iterates required is not far from the optimal number since,
as we have seen in section 3.1, at least 512 iterates are needed to reveal the entire structure
of this particular island chain. Let us run though the experiment. Five snapshots of the
experiment are shown in the following five pages (Fig. 3.17).

The first snapshot shows the result of trying 128 iterates. The dot pattern consists
of 4 isolated short line segments. The clustering algorithm correctly finds the 3 incon-
sistent edges and identifies the 4 clusters. Each cluster, however, does not represent a
quasiperiodic orbit. So, the recognition algorithm does not assign any category to this
set of iterates. It goes on to request for more iterates.

The second trial examines 256 iterates. The dot pattern changes. The short line
segments have grown into longer curves, but these curves are not yet dosed because of
the large gaps between the endpoints. The clustering algorithm again correctly identifies
the 4 clusters. Just as the previous case, the recognition algorithm does not classify the
iterates into any orbit type.
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(c) Symbolic description of MST

Figure 3.17: Recognizing a 4-island chain from the first 128 iterates.
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Figure 3.17: (cont.) Recognizing a 4-island ch.~in from the first 256 iterates.
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Figure 3.17: (cont.) Recognizing a 4-island chain from the first 384 iterates.
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Figure 3.17: (cont.) Recognizing a 4-island chain from the first 512 iterates.
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Figure 3.17: (coat.) Recognizing a 4-island chain from the first 640 iterates.
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The result of increasing to 384 iterates is shown in the next snapshot. The 4 open
curves have grown even longer, and the gap between the endpoints narrowed. But the
gaps are still too large for the recognition algorithm to identify them as closed curves.
Unlike the previous two trials, the clustering algorithm finds 7 inconsistent edges and
hence 8 clusters. These clusters correspond to the left and right halves of the islands.
Again, no orbit category is assigned.

Next, the number of iterates is increased to 512. We clearly perceive 4 isolated closed
curves in the dot pattern. The clustering algorithm correctly identifies the 4 clusters. The
recognition then randomly selects one of these islands, and verifies that it represents a
quasiperiodic orbit. Notice also the symbolic description of the branching structure: three
pairs of BRANCH symbols appear. Each BRANCH symbol represents a long primary
branch rooted at the corresponding diameter branch node. These primary branches are
the left and right halves of the islands.

The fifth and final snapshot contains the result of identifying 640 iterates. The clus-
tering and branching structures of the MST are the same as the previous case. The
recognition algorithm randomly chooses one of the 4 islands, and tests if it is a quasiperi-
odic orbit. The test result is positive. So, the category of QUASIPERIODIC ISLAND
CHAIN is assigned to this orbit segment consisting of 640 iterates. Since both the current
and previous trials result in the same orbit type, the recognition algorithm announces
that steady state has been reached, and reports its classification result.

3.6 ANOTHER EXPERIMENT: ORBIT ON SURFACE OF A

TORUS

The orbit recognition algorithm has been successfully tested with thousands of orbits
generated by the Henon map, Bak Map [41, and Standard Map [14]. This section will show
an experiment to identify a 2-loop separatrix of the Standard Map with parameter value

K = 0.6 and initial condition = (0.77310216, 0.54627895). This example is interesting
because the phase space of the Standard Map is the surface of a torus, not a euclidean
plane.

Although the orbit recognition algorithm is originally designed with a euclidean phase

space in mind, it turns out the same algorithm works for the toroidal phase space. The
only change that is required is to use a different distance metric in the Prim's algorithm
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for constructing the minimal spanning tree. Instead of a euclidean distance metric, a
torus distance metric is used to compute distances among points. Neither the orbit
classification rules nor the implementation of the identification routine and the stability-
control routine needs to be modified.

The snapshot in Fig. 3.18 displays the output of the orbit recognition algorithm. In
panel (a) is an orbit segment of 512 iterates. We can clearly perceive a 2-loop separatrix.
Note that the toroidal surface is represented by a unit square with the left and right edges,
and the top and bottom edges identified. Panel (b-i) shows the MST representation of
the orbit segment. The two long horizontal lines in the middle of the picture indicate
that the two "ends" of the separat.ix are in fact connected. In panel (b-2), we blow up a
small region around the right hyperbolic point. A few non-primary nodes are seen. The
'ottom panel contains the symbolic description of the branching structure; it shows that
the MST has a hyperbolic structure.

3.7 , EVALUATING THE PERFORMANCE

3.7.1 How reliable are the recognition results?

For the thousands of orbits that have been tried, the recognition algorithm never gives
a wrong answer. The algorithm may give up and fail to give an answer, but apparently
it never assigns a wrong orbit category. Fig. 3.19 shows two examples to illustrate the
robustness of the algorithm. In Fig. 3.19a-1, the set of 256 iterates is identified as
a quasiperiodic orbit. Fig. 3.19a-2 below displays 50000 iterates starting at the same
initial condition. We notice that the overall shape of the orbit is unchanged with the
exception that the spacing between neighboring iterates becomes so small that it gives
an impression of a solid closed curve.

The second example is a set of 800 iterates in Fig. 3.19b-1. The recognition algorithm
identifies this set as a 5-loop separatrix. Again, the overall shape of the orbit does not
change much after 50000 iterates as shown in Fig. 3.19b-2.

3.7.2 What are the orbits that cannot be recognized?

As I have alluded to in the preceding section, the recognition algorithm may give up
and fail to assign a orbit category. Based on the 'housands of orbits that have been
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Figure 3.18: Recognizing separatrix on the torus surface of the Standard Map. The
two horizontal lines in (b-1) are result of identifying the 9 = 0 and 0 = 1 Lines.
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Figure 3.19: Showing the robustness of KAM's recognition result. Both the quasiperiodic
orbit (a) and the separatrix (b) retain their shape after 50000 iterates.

experimented, the failure rate is roughly 20%, i.e., KAM fails to classify one out of every

five orbits. Three types of orbits give KAM most difficulty: (1) a quasiperioic orbit with

rotation number close to a rational, (2) a secondary island chain, and (3) a separatrix.
Let me discuss each of them in turn.

Informally, the rotation number p of a quasiperiodic orbit measures the average angle
points are rotated under the iteration of a map. ' If p = M is rational, then the orbit
will repeat itself after n iterations, i.e., the orbit is periodic with period n. On the other

'Rotation number will come up again in Chapter 4.
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hand, if p is irrational, the orbit will asymptotically cover a smooth closed curve densely.
The catch to it is the covering is dense only in the limit as the number of iterates tends
to infinity. The problematic case arises when p is close ' to a rational. In such case, the
initial orbit segment may spend most of its time in isolated regions in the phase space,
resembling a periodic orbit. It will take a large number of iterates before the "gaps"
between these isolated segments are eventually covered. An example of this is shown in
Fig. 3.20a. Looking at the first 1000 iterates (Fig. 3.20a-1), we may think the orbit is
periodic with period 19. But, the orbit turns out to be quasiperiodic with p close to
y-, as can be seen from the 30000 iterates in Fig. 3.20a-2 and the magnified picture in
Fig. 3.20a-3.

The second type of orbit that KAM fails to recognize is the secondary island chain.
An example will make this clear. Consider the orbit in Fig. 3.20b-1. It has 1250 iterates,
and appears to be a 21-island-chain. On closer inspection, we find that each of the
"islands" actually consists of seven smaller islands (Fig. 3.20b-3). Since secondary island
chains typically occupies small phase spa :e region, they do not affect the overall dynamics
significantly. Therefore, I have not implemented this particular orbit category.

The last type of troublesome orbit is a separatrix. Intuitively, it is clear why a
separatrix is problematic: it is sort of intermediate between a quasiperiodic orbit and a
chaotic orbit. So the initial segment of a separatrix may look like a quasiperiodic orbit
for a long time. For instance, one may conclude from Fig. 3.21a that the first 1250
iterates come from a quasiperiodic orbit. The loops of the separatrix, however, reveal
themselves after 4000 iterates. Note that the recognition algorithm does not classify the
first thousand iterates as a quasiperiodic orbit because a few branch nodes (which are
too small to be seen in the picture) already appear near the hyperbolic points.

3.8 CONCLUSION

This chapter shows how the difficult problem of recognizing the type of an orbit from a
finite set of iterates is reduced to a simpler problem of computing shape of a dot pattern
from its minimal spanning tree (MST) representation. The MST representation is a
useful idea to solve the orbit recognition problem because it has three advantages: (1) it
has desirable theoretical properties (such as symmetry, non-emptiness, and invaria&nce),

"A standard way to measure doseness is to use the continued fraction approximation to an irrational
[10].
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(a) 1250 iterates are shown. (b) The loops of the separatrix appear
after 4000 iterates.

Figure 3.21: KAM failed to recognize a separatrix with zo = (-0.31265157, -1.9546225)
and A = 2.824. It takes over 4000 iterates to reveal the entire separatrix.

and satisfies three constraints - soundness, connectivity, and separation - on grouping,
(2) there are efficient algorithms to compute the MST of a dot pattern (e.g., Prim's
algorithm), and (3) there are domain-independent ways to compute shape of a dot pattern
from its MST representation (such as Zahn's clustering method, and the method of
computing the symbolic description of the branching structure).

Knowledge relating the shape of an orbit and its orbit type is simply expressed in five
orbit classification rules. That KAM is able to reliably recognize the type of an orbit is
the outcome of the robustness of the symbolic description of the geometric structure of
the MST. Once the orbit reaches a steady state, the clustering and branching structure
of its MST representation will be stable against further addition of iterates.

Finally, we also see that the aggregate-partition-classify paradigm provides a sim-
ple description of the orbit recognition algorithm. In the first step, isolated iterates are
aggregated into a large structure - the MST. Then, the MST is partitioned into mean-
ingful pieces (such as an island or a loop of a separatrix). And the last step is the
assignment of orbit category based on specific domain semantics. We shall see later that
the aggregate-partition-classify paradigm is quite general: it is applicable to not only to
the problem of orbit recognition, but also the problem of phase space searching, and the

problem of parameter space searching.
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Chapter 3 Summary

Classifying the type of an orbit is important because KAM must
interpret what it "sees" in order to direct the course of its numerical
experiments. Orbit recognition is the problem of (1) assigning a type to
an orbit, and (2) symbolically describing the qualitative features of the
orbit (such as the number of islands of an island chain or the number
of loops of a separatrix).

KAM's orbit recognition module implements a domain-independent
clustering method based on the MST representation of a set of iter-
ates. Isolated iterates are first aggregated into a MST which repre-
sents the adjacency relationships among points. Symbolic description
of the branching structure of the MST is also computed. Then, the
MST is lpartitioned into meaningful sub-pieces by Zahn's clustering
method. The final step is to run a list of orbit classification rules which
[classifiea the orbit type based on the description of the shape of the
dot pattern.

Depending on the choice of the distance metric used in the Prim's
algorithm, the basic algorithm is able to run both on a euclidean phase
space and on a toroidal phase space. The orbit recognition algorithm
has been successfully tested with thousands of orbits generated by the
Henon Map, Bak Map, and Standard Map. Empirical results show that
the recognition algorithm never gives a wrong answer, but can fail to
give an answer 20% of the time.
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Chapter 4

Phase Space Searching

In the previous chapter, we saw how KAM identifies the type of an orbit by exploiting
the properties of minimal spanning trees. This chapter presents in detail the solution to
the Phase Space Search Problem, which has three parts:

" How are initial states chosen?

" When is searching in phase space terminated?

" How are the search results interpreted and summarized?

Given an initial point in the phase space, a discrete dynamical system generates a
sequence, possibly infinite, of points - an orbit of a specific type. Through judicious
sai"rling of initial points, a human expert can efficiently map out the global behavior of
the system. The issue is how KAM can mimic the expert's successive choices of initial

points to reveal the global pattern in the phase portrait.

Simply stated, the intuitive idea behind the solution is to implement a local consis-
tency test between neighboring orbits. If two adjacent orbits are compatible, there is no
need to search in the region between these two orbits. On other hand, if the two orbits

are incompatible, one must look further inside the region to discover missing orbits that
will restore compatibility among adjacent orbits.

KAM represents a collection of orbits by an Orbit Adjacency Graph: each node
of the graph stands for an orbit, and arcs linking two nodes denote spatial relationships
(such as adjacency, inside, and outside) between the two orbits.
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KAM operates as follows. Initially, it randomly selects some initial states, and clas-
sifies the resulting orbits. After adjacency relations between neighboring orbits are es-

tablished, the consistency maintenance pro !dure examines each adjacency arc. If an

adjacency arc is inconsistent, there must be some orbit, not yet seen, between the two

neighboring orbits in question. KAM will then focus its search in the spatial region

delimited by the two original orbits. KAM continually searches for new orbits until the

nodes of the Orbit Adjacency Graph are pairwise consistent.

The content of this chapter is as follows. The first section introduces the problem
of phase space searching. The next three sections, 4.2 to 4.4, discuss how local orbit

compatibility conditions can be derived from a single constraint - the continuity of dis-
crete flow. Section 4.5 covers the implementation of the basic consistency maintenance

algorithm. The next two sections, 4.6 and 4.7, present experimental results with three dif-
ferent area-preserving maps. Section 4.8 describes how a phase portrait is organized and

qualitatively described. The chapter concludes with an evaluation of the experimental

results, and an end-of-chapter summary.

4.1 WHAT IS PHASE SPACE SEARCHING?

Capturing all qualitative features of dynamics in phase space

Nonlinear systems have a very disturbing feature: how they behave often depends
sensitively on the initial states. A simple pendulum - one that swings in a plane under

the influence of gravity only with no friction and no air resistance - will do different

things depending on how you start it. If you displace it a little from the vertical rest
position and let it go, it will swing back and forth, and keep on swinging forever. You

can also make it rotate round and round; the more energy you give it, the faster it goes.

Or, if you are very careful, you can gradually adjust the energy you give it so that the
pendulum goes all the ,y up in the air - almost goes over but not quite. And if you

do it just right, the pendulum will balance exactly at the top. But balancing at the top

is extremely uncomfortable. Even the tiniest disturbance will cause the pendulum to

topple.

These are all the possible motions of our simple pendulum. But several questions

arise: Given the equation of motion for the pendulum, how can we go about determining

these behaviors? How do we represent these motions? How can we reason about them?
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For instance, given some initial state, can we tell how the system is going to behave? If
the pendulum is started with a slightly different initial state, how does the new behavior
compare with the old one? And finally, if you pick some initial state at random, what is
the likely result?

There is a classical way to answer these questions: find an explicit formula for the
solutions of the differential equations. But there are problems with this approach. The
first problem is that most systems do not yield to such treatment. Another problem
is that even if you do find such formula, it is often very unilluxninating. For instance,
our simple pendulum has an explicit solution, which can be expressed in terms of some
elliptic functions. But we still have to play with the formula quite a bit to unravel the
information that it contains.

But there is a better way - more geometrical, more qualitative, more insightful - to
find out how a pendulum behaves. This method uses the idea of phase space, and it
comes from Poincare.

To tell what a pendulum is doing, we need two state variables: its position and
velocity. Each pair of position and velocity defines a unique state. Let's represent this
state by a single point in a two-dimensional space whose axes are all the possible positions
and velocities. This space is called the phase space for the pendulum. The origin of the
phase space, which is the state with zero position and zero velocity, corresponds to the
rest state in which the pendulum is hanging vertically downwards.

What does the phase space of a pendulum look like? The velocity variable can go
from negative infinity to positive infinity. So the velocity axis is represented by a real line.
The sign of the variable just indicates which direction - clockwise or counterclockwise -
the pendulum is moving. Position is most conveniently measured in terms of the angular
deviation from the vertical. So the position variable can range from -180* to +1800. Of
course, -180 ° is the same position as +1800. That means the position axis should be
represented by a circle. So it is clear that the phase space of the pendulum is made up
by the product of a real line and a circle - that is, an infinitely long cylinder (Fig. 4.1).

Now imagine you start the pendulum at time zero at some initial state. Observe how
the pendulum evolves in time. Measure and plot the current state o" the pendulum at
regular time intervals. Let's say you do the measuring and plotting frequently enough
- once every half second, perhaps. You will see lots of closely-spaced points, and they
trace out a curve in the phase space. This is the orbit starting from one particular
initial state. We have seen this before in chapter 3. If the orbit looks like a circle near
the origin, then you know the system is swinging back and forth.
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Figure 4.1: The phase space (9, 9) of a simple pendulum is an infitely long cylinder
because 9 is an angular vaxiable modulo 27r. Performing many experiments with the
pendulum will reveal the typical structure of the phase portrait. It is easier to visualize
trajectories in the phase space by cutting the cylinder along the top, and Battening it as
shown. 82



Pick a different initial state, and you get a different orbit. Sample a dozen or so
initial states, and plot the resulting orbits. What will you see? If you do it right, you
should get a picture like the one shown in the lower part of Fig. 4.1. The picture is rather
like an eyeball that comes with eyebrows above and below. It has a few features worth
exploring.

There are concentric circles (labeled 3) near the origin. They correspond to small
oscillations about the rest point. The origin (labeled 1) is called a fixed point, and it
is stable because small perturbation does not cause the pendulum to move far away.
Another name is elliptic fixed point, because it is surrounded by elliptical curves. Far
away from the origin, there are "open" undula' ang curves (labeled 4), and they correspond
to the rotor motion. These curves are not really "open". They are closed curves on the
surface of the cylinder as they should be because the motion is periodic with respect to
the position. Between the undulating curves and the concentric circles is an interesting
orbit (labeled 5). It looks like an oval with corners at two points (labeled 2). This
orbit is called a separatrix. It is so named because it separates two different kinds of
motion: inside the separatrix the motion corresponds to small oscillation; outside, large
rotation. The two points at the corner are actually the same point. It refers to the
upward unstable position for the pendulum. It is called a hyperbolic fixed point, and is
unstable because slight perturbation can cause completely different behaviors. Notice
that the separatrix does not actually cross the hyperbolic fixed points. They are really
two distinct orbits. If the system starts somewhere on the separatrix, it will go closer
and closer to the unstable fixed point, but never quite get to it.

What's the point of all this talk about phase space and the pendulum? Well, it
constitutes a powerful way of capturing all possible motions of the pendulum in a single
picture. Mathematicians give this picture a name: the phase portrait. A phase portrait
is basically a picture that shows how different orbits fit together in phase space. It is a
powerful idea because it works not just for a simple pendulum, but for any dynamical
system. It doesn't even matter whether the system is continuous (like our pendulum)
or discrete (like the Henon Map). The same technique applies. By looking at the shape
of different orbits, and how they are connected up, we can answer many interesting
questions about the behavior of the system without ezplicitly solving any equations.

How to find the interesting orbits

How can we generate a reasonable phase portrait? After all, there are zillions of initial
states that we can pick, and in principle any one of them may lead to a behavior different
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from those of nearby initial states. Phase space searching is the problem of finding a
set of orbits that are representative, in the sense that they completely characterize the
global, qualitative behaviors of the system. For example, the phase portrait of the simple
pendulum should consist of at least those orbits that are labeled from 1 to 5 in Fig. 4.1.
Missing one of these representative orbits means that an important dynamical feature
will go unnoticed. On the other hand, we don't want to try too many orbits because that
is too costly and almost certainly will unnecessarily complicate the phase portrait.

4.2 CORE IDEA: CONSISTENCY OF NEIGHBORING ORBITS

Blind exhaustive testing of every point of the phase space - the space of all possible
starting conditions - to find out the typical system behavior is out of the question because
the number of possible starts is overwhelming (infinite, in fact). Moreover, interesting
qualitative behaviors such as a homoclinic orbit often occur in so small a region in the
phase space that unguided experiments will likely miss them.

One way to meet these difficulties is to exploit knowledge of the natural constraints
in the physical problem. What I am going to say next can be made much more precise,
but I'd rather rely on more intuitive arguments to get the main ideas across.

Using Poincari's geometric viewpoint, we visualize the time evolution of a system
as the motion of a point in a multi-dimensional phase space. The equations of motion
govern how the point should move in any instant of time. We can also imagine a collection
of points moving together like fluid particles flowing along. The fluid analogy is useful
because Joseph Liouville proved a theorem saying that if the system is Hamiltonian, then
the fluid is incompressible [3]. That means there are no sources or sink in the fluid. If you
start with a volume of "fluid particles" in phase space and let it flow, you'll find that the
volume will remain the same even though its shape may change drastically. Hamiltonian
systems preserve volume in phase space.

An easy corollary of the Liouville theorem is the fact that the Poincare mapping de-
fined on a surface near a periodic orbit is area-preserving, i.e., if the mapping is used
to transform any region of the section, its area will remain unchanged after the transfor-
mation. This is a key difference between a Hamiltonian system and a non-Hamiltonian
system. We are going to exploit the incompressibility nature of Hamiltonian flow.

Fig. 4.2a depicts a flow pattern containing two concentric flow lines. The two flow
lines circidate in opposite directions: the outer one (A) goes clockwise; the inner one
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(B), counterclockwise. The flow pattern, as it stands, is not consistent: the flow lines are

rubbing against each other. Some important features must be missing. Let me elaborate.

We first draw a vertical line, L, through the two circular flow lines. At point p where

L intersects flow line A, the tangential component of the velocity points to the right.
However, at point q where L intersects flow line B, the tangential velocity component

points left. By continuity of velocity, the tangential velocity component must vanish at

some point on L between p and q. Call this point c. What about the radial velocity at
c?

There are two possibilities. First, the radial component of velocity at c is also zero. In
this case, we have a stagnant point. Second, more likely, the velocity has some non-zero
radial component. Let us suppose the velocity vector goes outward (Fig. 4.2b). Because
the fluid is incompressible, the outgoing fluid particles cannot accumulate or disappear;

they must change direction and turn inwards at some point. We therefore infer that there

must be a roller of some sort that allows fluid particles to go clockwise half of the time,

and counterclockwise another half (see Fig. 4.2c). Continuously shrinking the roller, we

see that a stagnant point must exist inside the roller. This type of stagnant point is
called elliptic because it is surrounded by circular or elliptical flow lines.

Next, we draw a second vertical line L' crossing flow lines A and B at point p' and q'

respectively. We repeat the same argument to deduce that another roller and stagnant

point must exist (see Fig. 4.2d). Is the flow pattern augmented with the rollers consistent

so far? No. Consider what happens when the two rollers get really close to each other.

Where they touch, the velocity components cancel one another; a third stagnant point

is formed (Fig. 4.2e). Moreover, this last stagnant point is called hyperbolic because it
is the limit of a separatriz-hke flow line enclosing the rollers. Continuing to add rollers

inside the annular region, we will eventually come back to the first roller. We see that in

such a configuration the elliptic and hyperbolic stagnant points must alternate and come

in pairs (Fig. 4.2f shows 6 pairs of such stagnant points).

Inserting the "missing" features - the rollers, alternating elliptic and hyperbolic stag-

nant points, and the separatrix - into the original flow pattern, we obtain a globally con-

sistent picture (see Fig. 4.2). Notice that we have arrived at this non-trivial conclusion

by arguing about the physical continuity of adjacent flow lines and their incompressibility

nature - an example of the powerful idea that global conclusions can be deduced from

strictly local decisions.

Now, let us turn this physical insight around, and use knowledge about possiblt local

flow patterns to derive an understanding of the global behaviors of a physical system.

85



(a) Two eontrcnoa w lines (d) Peature missing between two rollers
Circulating In opposite diretion

(b) Tangualal velocity vanises at c. (a) SeParatrtiz-11e flow lines
Amiue rdialvelcit in pwads.meeting at a hyperbolie point

(c) Upwar radial vulocityr creates a rolle (f) A consisent Slaw pattern alternating
enclosing an eflhtic etaemMf point efllptic and bypebolc points

Figure 4.2: Deducing missing feat ures from incompatibility of two neighboring incom-
pressible Blow lines.
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4.3 ROTATION NUMBER: CONTINUITY OF DISCRETE FLOW

The consistency argument, we have just seen, depends on the fact that neighboring flow
lines must satisfy a continuity requirement: a continuous flow cannot have a sudden
change in flow direction. However, an orbit of a discrete mapping is not a smooth line,
but consists of points jumping from one place to another. We need a new technical
concept - the rotation number of a map - to formulate a continuity constraint for a
discrete flow.

4.3.1 Rotation Number Defined

The best way to understand what the rotation number means is to consider a home-
omorphism f (i.e., both f and its inverse f- 1 are continuous) acting on a circle. We
further suppose f is orientation-preserving: f preserves the cyclic order of points on
the circle. So, if x, y, and z are points on the circle with the cyclic order z < y < z,
then their images under f have the same cyclic order, namely, f(z) <f(y) <f(z). This
order-preserving property severely constrains the dynamics of f, and allows an important
topological invariant - the rotation number of a map f - to be well-defined.

Intuitively, the rotation number of f measures the average angle through which points
are rotated under one application of f. It is convenient to express the angle in units of

2r so that the rotation number takes a value between 0 and 1. Let me be more precise.

Pick some point z on the circle, and measure the average angle 0(n, z) turned through
by z under n successive applications of f. See Fig. 4.3. To avoid ambiguity caused by
integer multiples of 2r, all the angles and the summation are taken modulo 2w. Now,
define the rotation number of f as follows:

p(f) -- n 8(n,z)

Note there is no reference to the point z in the notation p(f). This is because the limit
on the right hand side is independent of the choice of initial point. To see this, consider

any point y on the circle. The sequence {8(n,z) - 0(n,y)} will tend to zero as n --4 o
since, otherwise, one point will eventually overtake the other under the applications of
f, and this is impossible given that f preserves order on the circle.

Harder to show is the fact that the limit defined above does in fact exist Technically, it
amounts to proving {O(n, z)) forms a Cauchy sequence on the real line (7]. The intuition
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p(f) = lim __ 1C2+2C3+0C4+4C5+...

Figure 4.3: A dosed curve is schematically shown as a circle around the fixed point C.

Rotation number for a map f is defined as the asymptotic average angle between f's
successive iterates 1, 2, 3, ....

behind the proof is similar to that used in the above argument to show the rotation
number is independent of the choice of z. Briefly one argues that O(n, z) converges as n
becomes infinite, since otherwise the point z will overtake itself on the circle. I shall not

dwell on the details, but hope it is at least plausible to believe in a rotation number p(f)
such that asymptotically the average angle turned by any point on the circle is 27rp(f).

A useful property about the rotation number is that it is invariant under coordinate
transformation - any continuous, invertible transformation - of the circle. This property
allows us to talk about the rotation number of an orientation-preserving homeomorphism
acting on any curve topologically conjugate to a circle.
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4.3.2 Compatibility of Rotation Numbers

Why is the rotation number a useful concept? The main reason is that it gives a nice
characterization of a quasiperiodic orbit. As we recall from Chapter 3, topologically
a quasiperiodic orbit covers a circle densely. It is clear that its rotation number can't
be rational because that will give rise to a periodic orbit. For if the rotation number
is, say, -, then any initial point will come back to its exact starting position after n
applications of the mapping. That means the orbit is periodic. So the rotation number
of a quasiperiodic orbit must be irrational [7]. The converse - that irrational rotation
number must give rise to a quasiperiodic orbit - is also true provided that the mapping
involved is sufficiently smooth. 1 So for each quasiperiodic or periodic orbit, we can
assign a unique rotation number to it. The rotation number of a quasiperiodic orbit is
always irrational; for a periodic orbit, it is rational. 2

Another useful property of the rotation number is that it changes continuously with
respect to initial states, i.e., a small change in the initial state causes a small change in
the rotation number. 3 The continuity of rotation number gives us a very important
constraint. In particular, it tells us where to locate periodic orbits and island chains.

Consider two nearby quasiperiodic orbits having rotation numbers p, and p2 respectively.
Let's suppose pi is slightly smaller than , and P2 slightly larger. By continuity, there
must exist a third, nearby orbit with rotation number exactly equal to 1. In other words,
a periodic orbit of period 5 must exist between the two quasiperiodic orbits (Fig. 4.4).
This also implies the existence of an island chain surrounding the period-5 orbit (section
4.2).

But there is one problem. There are infinitely many rationals between any two irra-
tionals, and so infinitely many periodic orbits must exist between the two quasiperiodic

orbits. This is in fact true. However, most of these periodic orbits have tiny island
chains surrounding them. That the size of an island chain is inversely proportional to
the number of the islands should be clear because after all the more islands you have
the less space each island has. The number of islands grows linearly, but their area
shrinks quadratically [3, Appendix 7]. So island chains with large periods will be tiny,

1The class of C'1 mappings is sufficient. A C' mapping is a continuous mapping whose first and
second derivatives exist and are continuous.

'To many, the distinction between rational and irrational number seems nonphysical. Yet, in the
context of dynamical systems, the rationality of a rotation number makes a qualitative difference in the
nature of the orbit in question.

"This statement has been proven for any area-preserving map that is sufficiently close to an integrable
area-preserving map [16]
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0
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15Perod 5 points

Figutre 4.4: Loolng at every nth iterate of f generates a sense of direction for the discrete

Row. Two quaiperiodic orbits in the neighborhood of a period-5 orbit are shown. The

fifth iterates of tke outer orbit rotate clockie because its rotation number P, is less
than .On the other hand, the fifh iterates of the inner orbit rotate countercl.ockwise

because its rotation number P2 is greater than -1

and therefore for most purposes they do not significantly affect the overall dynamics of
the system.

KAM does not compute the rotation number of a quasiperiodic orbit exactly, because
for phase space searching it is more informative to bound the rotation number of the orbit
by some rationals whose denominators are small integers. For example, if a quasiperiodic
orbit has a rotation number bounded by, say, (. 1), then it is reasonable to look for a
period-4 or period-5 orbit in the neighborhood of this orbit. In other words, the bound
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of a rotation number tells us not only where to look for a missing orbit, but also what
type of orbit to be expected. Consequently, the rotation number of a quasiperiodic orbit

is represented by a bound, an open interval with rational endpoints. I use the notation

p E (p q) to mean that the rotation number p lies somewhere between the irreducible
rationals p and q. '

One final problem remains: How do we choose a bound for the rotation number of a

quasiperiodic orbit? This question requires some mathematical techniques from number
theory because in some sense we are really asking the question "What is a good rational

approximation to an irrational?".

Dynamicists have discovered that a gadget from number theory - the Farey se-
quence - explains nicely the order in which island chains appear. A Farey sequence

of order n consists of all rational numbers of the form Z, where q < n, in the inter-

val [0,1] arranged according to their magnitude [10]. The definition is only defined for
positive integer n. For example, a Farey sequence of order 5 is the following sequence of
rationalnumbers: 0 1 1 1 2 1 3 2 3 4 1

1 ' 5 ' 41 3 ' 5 ' 2 ' 5 3 4 'i 5 1

It is very easy to compute a Farey sequence. For instance, the following simple

recursion will generate a Farey sequence of order n:

Ph+2 = _ Ph
qk+1

q&+2 = [-Jq+m-q&
~~~qk+ i j jqj-q

where p0 = 0, q0 = pi = 1, q, = n and 2 is the kth element of the sequence.

How is the Farey sequence used? Well, given that we are interested in large island
chains (i.e., those with small periods), we will choose the bounds for rotation numbers
from a Farey sequence of order n for some small n. In my program, I have set n to 30.
That means as far as phase space searching is concerned, I will ignore all those island
chains that have more than 30 islands. The Farey sequence motivates the following
definitions of compatibility of rotation numbers:

Definition 3 Two rotation numbers are compatible if there is no rational from a Farey
sequence of order 30 that lies between their associated bounds.

"An irreducible rational is a rational whose numerator and denominator have no prime factor in

common.
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So, for example, PIL E (1 1) is incompatible with P2 E (1 1) because 1 lies between
the two bounds.

Later we also want to talk about whether a periodic orbit is consistent with a neigh-
boring quasiperiodic orbit. That means we need to say when a period, which is an integer,
is compatible with a rotation number. Here is the definition:

Definition 4 An period k is compatible with a rotation number p if k is equal to the
denominator of one of the endpoints of the bound for p.

For example, an island chain with period 5 will be compatible with a quasiperiodic
orbit whose rotation number is bounded by (1 1).

4.4 ORBIT COMPATIBILITY

4.4.1 Pairwise Orbit Consistency

The key strategy underlying KAM's search for orbits in phase space is to focus the search
in regions where neighboring orbits are inconsistent. This section describes KAM's rules
for determining pairwise orbit consistency. These rules capture the constraints among
neighboring orbits that are derived from the physical continuity of incompressible flow,
and the continuity of rotation number (section 3.2 and 3.3).

As explained in Chapter 3, KAM recognizes six primitive orbit types. For considering
consistency, we can make two simplifications. First, a periodic orbit is thought of as a
degenerate quasiperiodic orbit with rational rotation number. Second, neither a chaotic
orbit nor an escape orbit constrains its neighboring orbits. With three orbit types -
quaiperiodic, island chain, and separatrix - the number of possible pairwise combinations
is six. The inconsistent combinations are described by the rules below (see Fig. 4.5):

* RULE 1: Missing Islands. Two quasiperiodic orbits with incompatible rotation
numbers are not consistent.

* RULE 2: Missing Separatrix. An island chain and a quasiperiodic orbit are not
consistent: a separatrix is missing.
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Figure 4.5: The six pairwise orbit inconsistent rules.
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e RULE 3: Missing Quasiperiodic. Two island chains with different number of
islands are not consistent.

o RULE 4: Missing Orbit-1. A separatrix with k loops is inconsistent with a
quasiperiodic orbit having rotation number p unless k is compatible with p.

o RULE 5: Missing Orbit-2. A separatrix with k loops is inconsistent with an
island chain with m islands unless k = m.

o RULE 6: Missing Orbit-3. Two separatrices having different number of loops
are not consistent.

4.4.2 Single Orbit Consistency

Besides the pairwise orbit consistency rules, KAM has rules that act on single orbits.
Unlike the pairwise consistency rules, the single orbit rules are mainly heuristics. The

purpose of these single orbit rules is to ensure that no large portion of the phase space

remains unexplored. There are five single orbit rules:

1. Boundary Circle Rule: A boundary circle - a quasiperiodic orbit isolated on

its outside from other quasiperiodic orbits - is inconsistent.

2. Empty Circle Rule: A quasiperiodic orbit that encloses a large region, but does

not enclose any other orbit is not consistent.

3. Boundary Island Rule: A boundary island - an island chain isolated on its

outside from other island chains - is inconsistent.

4. Empty Separatrix Rule: A separatrix that does not enclose any island chain is

inconsistent.

5. Chaotic Hole Rule: A chaotic region - a region covered by the iterates of a

chaotic or an escape orbit - containing a large empty "hole" is not consistent.

4.4.3 Suggestion Rules

After an orbit incompatibility is discovered, KAM searches for the missing orbits to

restore consistency. The purpose of the suggestion rules is to propose new candidate
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initial states for further exploration. Each suggestion rule handles a specific inconsistency

situation. Currently, KAM has a total of 12 suggestion rules - 7 of them come from

pairwise inconsistency, and 5 from single orbit inconsistency.

The basic idea behind the suggestion rules is to do a "bisection search" in the region

delimited by the offending orbit(s). To illustrate how the new initial states are proposed,

I discuss three suggestion rules that are used most frequently. Other rules are similar in

nature. The rules are named by the following convention. A suggestion rule for pairwise

inconsistency is named "typeI-and-typef suggestion rule", where typel and type2 are

the types of the offending orbits. A suggestion rule for single orbit inconsistency is

named after the corresponding inconsistency rule. For example, the boundary circle

suggestion rule corresponds to the boundary circle inconsistency rule.

Quasiperiodic-and-quasiperiodic suggestion rule

If two quasiperiodic orbits are inconsistent, the midpoints between the two closed curves

are promising initial states to try. We can define midpoints between two closed curves

C and D as follows. Let c be any point on C, and the closest point to c belonging to D

be d. Then, we say p is a midpoint between C and D if p is the midpoint of some line

segment containing such pair c and d. In the special case of two concentric circles with

radii r, and r2, the set of midpoints is another concentric circle with radius 2 x (r, + r2)

(Fig. 4.6).

There are many such midpoints to consider. In an early version of KAM, the sugges-

tion rule simply randomly chooses one of these midpoints. However, later experiments

show that a more effective choice is what I call the maximal midpoints which are

midpoints between the orbit points where the two closed curves are (locally) maximally

apart (see Fig. 4.7).

To compute locations that are locally maximally apart, I use the following procedure

(see Fig. 4.7a):

1. Parameterize the first orbit by arc length.

2. Compute the distances between the two orbits as a function of arc length.

3. Smooth the distance function obtained in Step 2 by the Gaussian mask at scale 4.

4. Find the local extrema of the distance function by locating zero-crossings.
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Figure 4.6: The dotted circle represents possible midpoints between two nested dosed
curves.

If there is an island chain, not yet seen, between the two quasiperiodic orbits, a maimal
midpoint is a good approximation to the position of one of these island centers. This is
because the islands are usually "oval-like", and they are more likely to occur in a wider
region between the two neighboring quasiperiodic orbits.

Quasiperiodic-and-Island suggestion rule

When a quasiperiodic orbit and an island chain are incompatible, typically ' two candi-
date initial states are proposed (see Fig. 4.8). The first initial state is chosen randomly
from the set of midpoints between the islands and the quasiperiodic orbit. The second
initial state is chosen randomly from the set of midpoints between any two successive is-
lands of the island chain. Midpoints between two islands are good approximations to the
locations of the hyperbolic periodic points. That hyperbolic periodic points are usually
located between two adjacent islands is a consequence of a common type of bifurcation
of periodic orbits, and we will come to that in chapter 5.

'A special case due to the Rimmer Bifurcation is discussed in section 4.7.2.
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(b) Five pairs of points (indicated by *) that are (locally) maximally apart.

Figure 4.7: Quaiperiodic-and-qumiperiodic suggestion rule. One of the maximal mid-
points (indicated by x) is randomly chosen.
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Bou dary-Circle suggestion rule

Recall that a boundary circle is a quasiperiodic orbit isolated on its outside from other
quasiperiodic orbits. The purpose of this suggestion rule is to extend the orbit as far out
as possible. There are two cases to consider. First, the simple case, when there is no
orbit outside the boundary circle, a midpoint between the orbit and the boundary of the
phase space is proposed. Second, when there are orbits outside the boundary circle, the

maximal midpoint is chosen by a procedure similar to that for the Qusiperiodic-and-
Quasiperiodic suggestion rule.
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4.5 IMPLEMENTATION

4.5.1 Representation of Phase Portrait

KAM represents the phase space by a rectangular grid. Currently, a grid of 25 x 25 is used.
The internal representation of a phase portrait contains information about the range of
the state variables, parameter value, the list of orbits already found, and statistics related
to the current simulation run. It also keeps track of the status of the grid: whether a
given grid cell is empty, or occupied by an orbit.

4.5.2 Representation of Orbits

Each orbit is described by its type, the set of iterates, and the grid cells it occupied. Two
orbits are equivalent if (1) their types are identical, and (2) they occupy the same grid
cells in the same phase portrait. When KAM finds a new orbit that is equivalent to some
old orbit, the new orbit is considered not useful, and will be discarded.

4.5.3 Computing Rotation Number Bounds

KAM computes the upper and lower rational bound of a rotation number p for a quasiperi-
odic orbit as follows. The default bound is (0 1). KAM iteratively tightens the bound
by looking at successive iterates of the orbit. Specifically, the first iterate of the orbit is
chosen as the initial point zo. Let n be the number of iterates it takes for the orbit to
come around once and overtake zo. The new approximation for p is then (1 -_i). The
approximation is improved by keeping track of the number of iterates going around and
overtaking zo twice, three times, and so on. The approximation process terminates when
one of the bounds is no longer a low-order rational.

Why does this method of computing the rotation number bound give us a correct
answer? Since the rotation number is defined by an asymptotic average, isn't it possible
for a map f to rotate, say, much faster than the average in the first few iterates, and
then slow down in the next few to make up the same average?

Fortunately, this situation is not possible with a orientation-preserving homeomor-
phism f. To see this, look at Fig. 4.9. Shown in the figure is a map whose rotation number
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appears to lie between 1 and 1 after the orbit comes around once. Question: Where can
the image of point 5 go? Because point 5 lies on the circular arc between point 0 and 1,
and because f is continuous and orientation-preserving, f(5) has to lie on the circular arc
between f(0) and f(1). We can repeat the same argument for the image of point f(5),
the image of f(f(5)), and so on. So, when the orbit comes around point 0 the second
time, the point f4(5) is going to lie somewhere on the circular arc between point 4 and
5. The point f4 (5) will be closer to point 0 than one of these two points. As a result,
the rotation number bound calculated from the first two revolutions is tighter than that
obtained from the first revolution alone. In fact, the rotation number bounds computed
from each successive revolution form a monotonic sequence asymptotically converging to
the rotation number.

4.5.4 Consistency Complaints

When KAM detects a pair of inconsistent neighboring orbits, it flags a complaint. A
consistency complaint is a data structure describing the nature of the complaint.
Specifically, it records the type of complaint, and the identity of the orbits involved. A
complaint-dispatcher examines the type of a complaint, and invokes the appropriate
suggestion rule to propose new candidate initial states.

4.5.5 The Basic Algorithm: Consistency Maintenance

The basic data structure is an Orbit Adjacency Graph. The graph has one type of node,
and three types of links. Each node of the graph represents an orbit. The first two
types of link - INSIDE and OUTSIDE - are directed. An INSIDE link goes from orbit
A to orbit B if A is inside the region enclosed by B. A similar definition goes with the
OUTSIDE link. * The third type of link is the ADJACENCY link. We say an adjacency
link between two nodes is valid if the orbits in question are adjacent in the phase portrait.
An adjacency link is inconsistent if the adjacency cannot be part of a legal flow pattern
allowed by local dynamics.

Consistency maintenance is the process of updating adjacency links: create new links,
remove invalid links, and identify inconsistent links. The process has two purposes: (1)

'Note both INSIDE and OUTSIDE links are needed because they are not exactly inverses of each
other. For example, two island chains can both be outside of each other.
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Figure 4.9: Initial iterates of an order-preserving homeomorphism constrain the locations

of the subsequent iterates. As a result, the rotation number bounds calculated from each

successive complete revolution form a monotonic sequence converging to the rotation

number.

maintain correct adjacency relations between orbits as new orbits are added, and (2)

create a complaint for each inconsistent link. The complaints are stored in a stack, the

complaint-stack. A complaint is removed from the stack if either the adjacency link

causing the complaint is no longer valid, or the complaint does not lead to useful new

orbits. KAM continually searches for new orbits until the complaint-stack is emptied.

The principal steps of consistency maintenance are:
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1. Initially, pick some random initial states. Create orbits corresponding to these
states.

2. Add the newly created orbits to the Orbit Adjacency Graph.

3. Update adjacency links. Produce a list of invalid adjacency links to be removed,
and a list of new adjacency links to be added.

4. For each new adjacency link to be added, run inconsistency rules against it. If the
link is inconsistent, a new complaint is made. Put the complaint on top of the
complaint-stack. Add the new link to the graph.

5. For each invalid adjacency link to be removed, delete, if any, its associated complaint
in the complaint-stack. Remove the link from the graph.

6. Handle the complaint on top of the complaint-stack. Examine the type of com-
plaint, and propose a list of new initial states to try.

7. Create a new goal with the suggested initial states. Make new orbits starting from

these initial states.

e If the new goal leads to no useful orbits " , the goal is abandoned, and the
associated complaint removed.

8. Repeat the process (steps 2 to 7) until the complaint-stack is empty.

The consistency maintenance algorithm terminates when all the inconsistency com-
plaints are removed. However, a consistent Orbit Adjacency Graph - a graph all of whose
orbits are pairwise and singly consistent - is a necessary but not sufficient condition for
the self-consistency of a phase portrait. For instance, KAM will ignore an inconsistency
complaint if it does not find any useful orbits in a few consecutive trials (see Step 7
above). One common situation that causes KAM to abandon a complaint is when KAM

is looking for a "hard" separatrix - a separatrix that takes over a few thousand points to

reveal its structure. Another common situation is when the region between two offending
orbits is so small that the new orbit found is equivalent to one of the orbits already seen.

7An orbit is useless if either it is equivalent to some orbit previously found, or KAM fails to recognize

its type.
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4.5.6 Determining Adjacency

Roughly speaking, two orbits are adjacent if there is no orbit between them. KAM imple-
ments this idea of adjacency by a contour activation procedure. To find the neighboring
orbits of a given orbit A, the grid cells surrounding orbit A in the internal representation
of the phase portrait are activated. The activation spreads both outwards and inwards,

iteratively activating neighboring grid cells (see Fig. 4.10). The outward (inward) acti-
vation is terminated when another orbit outside (inside) A is encountered.

Because orbits are not really a continuous line (they are a collection of discrete points),
it is possible for the activation to leak through a quasiperiodic orbit, and activate grid cells

outside the orbit. Some sort of thresholding operation is therefore necessary to reduce
such leakage. In the current implementation, the contour activation allows activation to
continue until a sufficient number of the activated grid cells are "blocked" by the orbits
encountered.

4.6 EXPERIMENT: MAIN ILLUSTRATION

To illustrate the algorithm, I give an example of how KAM explores the Henon map with
a specific parameter value cos a = 0.24. The total running time for this experiment is 3.5
hours. a KAM explores 15 initial states. Ten of these orbits are useful: 5 quasiperiodic

orbits, 3 island-chains, 1 separatrix, and 1 escape orbit. Fig. 4.11 displays these orbits;
the figure is remarkably similar to Fig. 4.12 taken from Henon's paper. The remaining
five initial states result in orbits that KAM fails to recognize.

Fig. 4.13 shows how KAM finds the first eight orbits. The following is a summary

of the steps leading to the discovery of these orbits. Parts of the symbolic structure

representing the Orbit Adjacency Graph are shown alongside the first six snapshots

(Fig. 4.13&-f). Note that KAM successfully finds the separatrix at the eighth trial (see

Fig. 4.13i and step 7 below).

1. Pick a random initial state (0.08 0.72). Result: orbit-1 (QUASIPERIODIC) with

$lt takes KAM about an order of magnitude more time to produce a phase portrait than it takes a
human expert. The main reason is that the human expert is much faster in pattern recognition. KAM
spends roughly 80% of its time in orbit recognition.
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(b) Showing the underlying 25 x 25 grid.

Figure 4.10: An example of determining adjacent orbits by propagating contour of an
orbit.
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Figure 4.11: Upper: KAM finds 10 orbits in the finished phase portrait; the portrait
resembles that shown in Fig. 4.12. Lower: KAM generates a summary report of its
findings.

2. Empty Circle Rule. Pick the centroid of orbit-i at (0.04 0.01). Result: orbit-2
(QUASIPERIODIC) with P E (-L -L)

3. Missing Islands Rule. Pick a midpoint (-0.23 -0.11) between orbit-i and orbit-2.
Result: orbit-3 (QUASIPERIODIC) with p E (-L -L).

4. Missing Islands Rule. Pick a midpoint (0.48 0.16) between orbit-i and orbit-3.
Result: orbit-4 (QUASIPERIODIC) with p E (1 1).
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5. Missing Islands Rule. Pick a midpoint (0.05 0.56) between orbit-1 and orbit-4.
Result: orbit-5 (5-ISLAND CHAIN).

6. Missing Separatrix Rule. Pick two initial states: first, a midpoint (0.298 0.519)
between two islands of orbit-5; second, & midpoint (-0.02 0.48) between orbit-4 and
orbit-5. The first initial state results in an orbit which KAM fails to recognize. The
second initial state results in orbit-6 (5-ISLAND CHAIN).

7. Missing Separatrix Rule. Pick two initial states: first, a midpoint (0.299 0.519)
between two islands of orbit-6; second, a midpoint (0.39 -0.24) between orbit-4 and
orbit-6. The first initial state results in orbit-7 (5.loop SEPARATRIX). The second
initial state results in orbit-8 (5-ISLAND CHAIN).

8. Missing Islands Rule. Handle complaint caused by inconsistency between orbit-
2 and orbit-3. Pick a midpoint (-0.08, -0.12) between orbit-2 and orbit-3. Result:
an orbit which KAM fails to recognize. (KAM tries three different midpoints, but
fails to recognize any one of them. The current complaint is therefore removed.)

9. Boundary Circle Rule. Orbit-1, the outermost quasiperiodic orbit, is not consis-
tent. Pick some random point (0.86 0.08) outside orbit-1. Result: orbit-9 (ESCAPE

ORBIT).
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10. Boundary Circle Rule. Orbit-i, the outermost quasiperiodic orbit, is not con-
sistent. Pick some midpoint (-0.11 -0.64) between orbit-1 and orbit-9. Result:
orbit-10 (QUASIPERIODIC) with p E (-i -L).

4.7 OTHER EXPERIMENTS

I have tested the consistency maintenance algorithm with more than 30 different values
of the parameter a E (0 2.2) of the Henon Map. KAM is able to reproduce all phase
portraits like those found in Henon's paper. The algorithm has also been successfully
run on over 50 phase portraits of two other area-preserving maps: (1) the Bak Map
with a cubic nonlinearity, and (2) the Standard Map with a toroidal phase space. In
this section, I will single out three experiments that are more complicated than the one
shown in Fig. 4.11, and indicate how KAM is extended to handle these cases. It should
be mentioned here that the extensions are not ad hoc; they are all that are needed for
handling a general area-preserving map, and this is a consequence of a theorem that
provides a complete classification of generic bifurcations of periodic points (see Chapter
5).

4.7.1 Phantom 3-Kiss Bifurcation

In general, KAM does not search a region bounded by two compatible quasiperiodic
orbits because island chains are not expected there. There are, however, two exceptional
situations 9 : the Phantom 3-Kiss and Phantom 4-kiss bifurcation. I shall illustrate my
point by the Phantom 3-Kiss Bifurcation. A similar explanation carries through to the
other case.

Consider the phase portrait of the Henon Area-preserving Map with parameter value
a = 2.0042417 (i.e., cos a = -0.42). Fig. 4.14a shows two quasiperiodic orbits. Their
rotation numbers are bounded by the same interval (2 1); therefore, the orbits are
compatible. Yet, as we shall see, these two orbits bound a large 3-island chain. Let me
explain, again using the incompressible fluid analogy, how the island chain can arise.

'We know there are only two exceptions because, among -11 the periodic orbits created by the generic
bifurcations for area-.preserving maps, only those coming out of these two bifurcations have the excep-
tional geometry. See Chapter 5 on bifurcations.
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Phase Portrait Orbit Adjacency Graph

NO& pt. Link Type
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OUT outside Link

Is ad chin ADJ adjacency link

(&-I) Pick a random initial point (a-2) Empty Graph (notations shown)

I.0

4.1

-l.. -I.$4 O7 7

(b-1) The first quasiperiodic orbit found (b-2) A node created for the quasiperiodic orbit

.

ADW/I

4. IN

AP-2

(c-i) The second quasiperiodic orbit found (b-2) New node and links established

Figure 4.13: How KAM picks initial states. Left: Snapshots of phase portraits. Crosses
(x) indicate the new initial states picked. Right: Data structure representing parts of
the Orbit Adjacency Graph. 108



Phase Portrait Orbit Adjacency Graph
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shape. It is not hard to see an elliptic stagnant point resides in the center of the roller.
11

Since the appearance of starfish-like orbits is a prominent feature of this type of
bifurcation, KAM distinguishes starfish orbits from ordinary ellipse-shaped quasiperiodic

orbits.

A starfish orbit is a quasiperiodic orbit whose shape consists of either 3 or 4 radially
disposed arms about a central disk. The arms can be detected by rapid change in the
curvature of the boundary. The length of an arm relative to the radius of the central
disk provides a measure of the protrusiveness of the arm. Currently, KAM requires the
arm to be at least two times longer than the disk for an orbit to qualify as starfish-like.
When a starfish orbit is found, KAM selects a point, inside the orbit, close to the tip of
one of the arms. This point is a reasonable approximation to the location of the island
chain, if any, enclosed by the orbit. Fig. 4.14c shows a typical point chosen by KAM.

The point leads to a 3-island chain in the next trial (Fig. 4.14d).

To detect rapid changes in boundary curvature, KAM uses the following method.
The "curve" formed by the iterates of an orbit is parameterized by C(s) = (z(s),y(s))
where s is the arc length. The coordinate functions, x(s) and y(s), are smoothed by the

Gaussian and its first two derivatives at spatiaw scale of 11. Finally, the zero-crossings
of the curvature function x(s), ard thAe signs of k(s) are computed to determine the

locations and type of the extrema.

4.7.2 Bak Map: Rimmer Bifurcation

In a typical area-preserving map, a chain of islands surrounding a fixed point belongs
to a single orbit. However, in maps with additional symmetry, such as the Bak Map,

the islands can be made up by two island chains each consisting of half the islands. A
good illustration is shown in the phase portrait of the Bak Map with parameter value
A = 2.0 (see Fig. 4.15). The ten islands, on the border of the regular region, belong to
two alternating 5-island chains.

This type of bifurcation - known as Rimmer bifurcation, or double m-bifurcation

- gives rise to twice as many periodic orbits as the typical bifurcation. Double m-
bifurcation, though non-generic within the class of area-preserving maps, can be shown

"That a 3-island chain is frequently found inside a starfish-like orbit is a consequence of extremal
bifurcation (see Chapter 5).
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Figure 4.15: The phase portrait of Bak Map with A = 2.0.

to be generic for reversible maps [26]. 12 It is observed [16] that the fixed point of a
reversible map has normal m-bifurcation when m is even, but double m-bifurcation when
m is odd.

The double m-bifurcation creates some difficulty for phase space searching. Finding
the first island chain around the fixed point is routine. However, once the first island
chain is found, the Orbit Adjacency Graph is pairwise consistent in the neighborhood of
this island chain; KAM does not know it has to look for the second of the pair of island
chains created by the double m-bifurcation. So, KAM needs to recognize a potential
double m-bifurcation, and search for an island chain pair.

Notice the arrangement of the two island chains in Fig. 4.15. The two chains are
rotationally symmetric - their islands are alternating. A heuristic making use of this
symmetry is built into the Quasiperiodic-and-Island suggestion rule (see section 4.4.3)

'2 A map S is called a reflection if S o S = Identity and the Jacobian determinant of S is negative.
We say a map T is reversible if T is invertible and T' = S o T o S. In words, a reversible map
has the property that the reflection (by S) of the image (under T) of a point p is the inverse image of
p's reflection. All area-preserving maps derivable from hamiltonians even in momenta are reversible.
However, not all area-preserving maps are reversible.
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specifically to look for the symmetric daughter of an m-island chain whenever m is odd.
Fig. 4.16a shows the candidate initial state proposed by the heuristic once the 5-island
chain is found. The sister 5-island chain is found in the next trial (Fig. 4.16b). The
heuristic is effective in handling all the double m-bifurcations arising from the Bak Map
and the Standard Map.

1 .s.v a. i .e i.e; A . .

.6./ C
I..

-I _________________________________.-I ___.___,,__......_-__-- ___......__.,_-_,__.__....

-L.- 4.5 $.4 6. 1. - -4.5 ,., ,. 1

(a) An example of Rimmer bifurcation. (b) A second S-island chain found
(x indicates initial state proposed.)

Figure 4.16: Looking for Rimmer island chains

4.7.3 Standard Map: Toroidal Phase Space

The Consistency Maintenance Algorithm is also tested on the Standard Map, whose
phase space is a torus. The torus is not topologically equivalent to the euclidean plane.
For instance, if one draws any closed curve on the euclidean plane, the curve bounds a
region on the surface. This is not true on the torus: there exists some closed curve on
the torus that does not bound any area (see Fig. 4.17). Consequently, the algorithm to
determine orbit adjacency has to be modified to handle the contour propagation of a
non-bounding closed curve. Certain suggestion rules that refer to the boundary of the
phase space are also changed because, unlike a compact subset of the euclidean plane,
the torus does not have a boundary. For instance, when there are no orbits outside a
boundary circle, the boundary circle suggestion rule will suggest a midpoint between
a point on the orbit and the point farthest from it on the orbit with the distance being
measured along the exterior of the orbit.
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The basic consistency algorithm, however, remains intact. A typical result is shown
in Fig. 4.18 with the parameter value k = 1.4. KAM takes about 8 hours of computer
time to find 22 representative orbits from a total of 37 trials.

0 1 E
(a) Any domed cur" boadn area (b) The closed cure dodo uo boumd an area

oa the Zuildean plane. an tohe s.

Figure 4.17: The torus is not topologically equivalent to the Euclidean plane because one
can draw non-bounding dosed curves on the toroidal surface.

The phase portrait of the Standard Map is more complicated than that of the Henon
Area-preserving Map or the Bak Map. For example, whereas all periodic orbits of the
two plane area-preserving maps bifurcate from a single fixed point, the periodic orbits
of the Standard Map come from different families. Four such families are prominent in
Fig. 4.18. The first family originates from the fixed point at (I, 0). The local structure
around this fixed point is similar to those we have seen before - the fixed point being
surrounded by, in this case, a ordinary 6-island chain and two alternating 7-island chains
(from Rimmer bifurcation). The second family bifurcates from the period-2 orbit in the
center of the phase portrait. Two R.immer 10-island-chains oscillate about the period-2
orbit. The third and fourth family of periodic orbits consist of the 3-island chains located
between the first and the second family.

4.8 CONCISE PHASE PORTRAIT DESCRIPTION

We have seen how KAM searches for representative orbits in the phase space by identify-
ing locally compatible orbits. These orbits are aggregated in the orbit adjacency graph,
which contains a great deal of information about the structure of the phase portrait. Our
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goal in this section is to show how KAM generates a concise qualitative description of
the phase portrait from the orbit adjacency graph. Just as we use the notion of orbit
to compactly describe and make explicit the inherent structure of a large collection of
points in the phase space, we introduce another concept, the canonical flow pattern,
to represent the structure of an aggregate of orbits.

A canonical flow pattern consists of three types of orbits: (1) a primary orbit, (2)
quasiperiodic orbits surrounding the primary orbit, and (3) secondary island chains
bifurcating from the primary orbit. Informally, the primary orbits are stable fixed points
or stable periodic orbits that exist in the limit of zero perturbation strength. For example,
the origin (0,0) of the Henon Map (as in Fig. 4.11) is a primary fixed point because it
exists even when the perturbation term, z2 , vanishes. Another example is the stable
period-2 orbit at (,1) and (0, ) of the Standard Map in Fig. 4.18. This period-2 orbit
exists in the limit the perturbation parameter K --+ 0. Island chains that are not primary
are called secondary island chains.

Each canonical flow pattern characterizes the qualitative features of a portion of the
phase portrait by describing the geometry of orbits near a primary orbit. Since multiple
primary orbits are common, a typical phase portrait consists of several canonical flow
patterns. The phase portrait in Fig. 4.18, for instance, has 4 primary orbits - a fixed
point at (. , 0), the period-2 orbit just mentioned, and two period-3 orbits. Each primary
orbits and the secondary orbits associated with it constitute one canonical flow pattern.
We say two canonical flow patterns are connected if there exist some orbit that can move
freely between the neighborhoods of the two flow patterns. To take an example, the four
canonical flow patterns in Fig. 4.18 are all connected.

Partitioning the orbit adjacency graph into canonical flow patterns involves 5 steps:

1. Identifying primary orbits

2. Grouping orbits

3. Simplifying orbit structures

4. Classifying canonical flow patterns

5. Determining connectivity of canonical flow patterns
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4.8.1 Identifying Primary Orbits

Classifying the geometry of the orbits allows simple visual identification of the primary
orbits. Specifically, the primary orbits are elliptic fixed points, or elliptic periodic points
that do not "enclose" periodic points of smaller periodicity. According to this criterion,
all elliptic fixed points are primary orbits. Periodic orbits, however, can be either primary
or secondary. For instance, consider the period-6 periodic points inside the 6-island chains
shown in Fig. 4.18. We see that these period-6 periodic points enclose the fixed point (or
period-1 periodic point) at (I, 0), and so they cannot be a primary orbit. 13 Another
example is the period-2 periodic points inside the 2-island chains in the middle portion
of Fig. 4.18. This time these period-2 periodic points do not enclose the fixed point at

(4, 0). Since (., 0) is the only fixed point of this phase portrait, we can conclude that
the period-2 periodic points form a primary orbit. Similarly, the two period-3 orbits are
primary orbits because they do not enclose any fixed point or period-2 orbits.

The procedure to identify primary orbits consists of two steps. First, collect all
elliptic fixed points and elliptic periodic orbits. Second, remove periodic orbits that
enclose periodic orbits of smaller periodicity.

How does the program determine when one periodic orbit encloses another? Suppose
we have two periodic orbits A and B. Further suppose A is period m, and B is period n.
Let us also assume m > n. If A encloses B, then each point of B has to be surrounded by
an equal number of points from A. So, A cannot enclose B unless m is an integer multiple
of n. Let us say m = k x n for some positive integer k. To determine if A encloses B, the
following simple heuristic is used. For each point pB of orbit B, find its k closest points
from orbit A. Let A, be the centroid of these k points, and RA be the average distance
of the k points from A. Construct a circle centered at A, with radius = f x RA for
some small positive factor f. 14 We say A encloses B if each PB of orbit B lies inside the
corresponding circle. See Fig. 4.19.

4.8.2 Grouping Orbits

Orbits that are not primary are called secondary. After the primary orbits are identified,
the next step is to partition secondary orbits into groups surrounding the primary orbits.

Relfe¢. that the phase space of the Standard Map is a torus. The upper and lower edges are identified,
and so are the left and right edges.

"4 n the current implementation, f is arbitrarily chosen to be 0.15. There is nothing special about
0.15; any number slightly greater 0 seems to work as well.
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Circle centered at A c
AAwith radius = 0.15 x R*-0 A

Rt
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Figure 4.19: The period-6 orbit A (indicated by .) encloses the fixed point B (indicated
by o) because B lies within the circle (shown as a dotted circle), centered at the centroid
of orbit A, with radius = 0.15 x RA where RA is the average distance of a periodic point
from the centroid. In this example, we have m = 6, n = 1, and k = 6.

The criterion for associating a secondary orbit S with a primary orbit P depends on the
type of S. Specifically, four rules are used:

1. S is a bounding quasiperiodic orbit: Associate S with P if P is in the inside of S.

2. S is an island chain: Associate S with P if the periodic orbit inside S encloses P.

3. S is a separatrix: Associate S with P if some secondary island chain of P is inside
S.

4. S is a chaotic, an escape, or a non-bounding quasiperiodic orbit: Associate S with
P if S is adjacent to some secondary orbit of P.

The results of grouping orbits for Standard Map with K = 1.4 are shown in Fig. 4.20.
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Figure 4.20: Grouping orbits around primary orbits in the Standard Map phase portrait
with K = 1.4. Chaotic orbits are not shown.

4.8.3 Simplifying Orbit Structures

In general, not all secondary orbits are essential for the qualitative description of the flow
pattern near their associated primary orbit. For example, the secondary orbits shown in
Fig. 4.20& contain redundant nested 6-island chains. Of the three nested 6-island chains,
the largest one gives the best estimate of the phase space region enclosed by these island
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chains. We say such an island chain is maximal because it is the outermost of a sequence
of nested island chains having the same period. Similarly, the four nested non-maximal
quasiperiodic orbits enclosing the fixed point are also redundant.

The third step is therefore to simplify the group of orbits around a primary orbit by
removing redundant orbits. Three types of orbits are removed: (1) non-maximal island
chains, (2) non-maximal quasiperioclic orbits, and (3) high-order island chains. An island
chain with a large number of islands usually occupies an insignificant phase space area,
and so it has little effects on the overall dynamics. Fig. 4.21 shows the remaining five
secondary orbits around the fixed point after nine redundant orbits are removed.

1.0
e  

K - 1.4

1.211

... ,1

S.,

O.S 1.25 0.5" O.15 1.9"

Figure 4.21: Removing nine redundant orbits around the fixed point at (, ) results in
five essential secondary orbits that capture the structure of the flow pattern around the

fixed point.

4.8.4 Classifying Canonical Flow Patterns

Simplifying the group of secondary orbits around a primary orbit generates what I call
a canonical flow pattern - the characteristic arrangement of island chains and KAM
curves around a primary orbit. The qualitative description of the phase portrait consists
of a geometric description of the orbits comprising the canonical flow pattern, and how
the canonical flow patterns are related. Thus it is natural to ask when two canonical
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flow patterns have the same description. The fourth step, therefore, is to assign semantic
labels to the canonical flow patterns.

Classifying canonical flow patterns begins by placing an equivalence relation on the
set of canonical flow patterns. A good classification requires a natural equivalence re-
lation, and a set of computable invariants that identify an individual equivalence class.
An equivalence relation should be natural in the sense that it is based on qualitative
resemblances of the orbits structures of the phase portraits. On the other hand, the
equivalence relation should also be tractable in the sense that there exist computable
numerical or algebraic invariants that are equal for canonical flow patterns belonging
to the same equivalence class, and are different if the canonical flow patterns belong to

different equivalence classes.

An equivalence relation fundamental in dynamical systems theory is topological
conjugacy. Two discrete maps f and g are topologically conjugate if there exists a

homeomorphism h such that h o f = g o h

The intuition behind the definition is the idea that two geometrical objects - phase
portraits, in this case - &r. &he same if there is a certain type of change of coordinates
that transforms one -" *,t into the other. A circle, for example, under a linear change of

coordinates, can Ie transformed into an ellipse, and hence they are qualitatively similar.

Of course, how fine the classification is depends on the restriction on the allowable type
of coordinate changes. Equivalence under a continuous change of coordinates - a homeo-
morphism - corresponds to a topological conjugacy; equivalence under a smooth change
of coordinates (i.e., the transformation has continuous derivatives), a smooth conjugacy.
Depending on the particular problem, we may desire a finer or coarser classification of
equivalent behaviors.

One reason why topological conjugacy is commonly used is that discrete maps that are

intuitively non-equivalent are in fact classified as different equivalence classes. Although
topological conjugacy is natural, it seems to be too strong for our purpose. To see this, we

first note that topological conjugacy preserves three important invariants - fixed points,

periodic orbits, and rotation number. So, if two maps differ in any of these invariants,
then they are not topologically conjugate. For example, orbits with rotation number

jand 1 are not topologically conjugate even if they are enclosed by island chains with
identical appearance. Another problem is that topological conjugacy does not take into
account the relative importance - measured in terms of phase space area occupied by the
enclosing island chain - of periodic orbits. Thus, if two phase portraits differ by even
one small island chain, they are still not topologically conjugate.
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Because topological conjugacy classifies intuitively similar phase portraits as non-
equivalent, and because periodic orbits associated with small island chains are difficult
to find numerically, we are led to consider a weaker equivalence relation that ignores

details of rotation number and insignificant island chains. In the rest of this section, I
will introduce a classification based on a notion of qualitative equivalence, which has not
been studied in the dynamical systems literature.

Canonical flow patterns fall into two main categories: (1) F-FLOW-PATTERN, and
(2) P-FLOW-PATTERN. The prefix letter "F" or "P" identifies the type of the primary
orbit. A F-FLOW-PATTERN refers to a collection of orbits surrounding a fixed point.
Similarly, a P-FLOW-PATTERN designates orbits surrounding a Leriodic orbit. Thus,
for example, the canonical flow pattern in Fig. 4.21 is a F-FLOW-PATTERN, whereas
those in Fig. 4.20b,c,d are P-FLOW-PATTERNS.

Within each category of flow pattern, the canonical flow pattern is further character-
ized by four indices m, n, p and q. The convention is as follows:

1. m - number of (ordinary) island chains

2. n = number of (ordinary) island chains that are bounded by a KAM curve

3. p = number of Rimmer island chain pairs

4. q = number of Rimmer island chain pairs that are bounded by a KAM curve

I use the notation "F-FLOW-PATTERN-m-n-p-q" or "P-FLOW-PATTERN-m-n-p-q"
to identify the type of a canonical flow pattern. Also for convenience, when p = q = 0,
I use the shorthand "F-FLOW-PATTERN-m-n" or "P-FLOW-PATTERN-m-n " .

For an example of categorization, consider again the F-FLOW-PATTERN in Fig. 4.21.
Since the 6-island chain around the fixed point is the only non-Rimmer island chain, and

it is bounded by a KAM curve, we have m = n = 1. Outside the 6-island chain, there is
a pair of Rimmer 7-island chains, but these island chains are not bounded by any KAM
curves. So we have p = 1, and q = 0. The type of this canonical flow pattern is written
as F-FLOW-PATTERN-1-1-l-0.

A second example is the flow pattern shown in Fig. 4.20b. Here the primary orbit
is a period-2 orbit. Since the primary orbit is surrounded by a pair of Rimmer 10-
island chains which are not bounded by any KAM curves, we have m = n = 0, p = 1,
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and q = 0. The type of canonical flow pattern is written as P-FLOW-PATTERN-0-0-
1-0. Note: the 2-island chain enclosing the period-2 orbit is not considered an island
chain in the classification because each of the islands is thought of as a quasiperiodic
orbit surrounding one of the period-2 points when we iterate the square of the map. This
convention gives consistent meanings to the four indices in both the F-FLOW-PATTERN
and the P-FLOW-PATTERN.

In a similar manner, we classify the remaining two flow patterns in Fig. 4.20c,d as

P-FLOW-PATTERN-0-0 because the period-3 orbits are not surrounded by any island
chain.

Finally, we define the notion of qualitative equivalence of canonical flow patterns:

Definition 5 Two canonical flow patterns are qualitatively equivalent if (1) they
have the same primary orbit, (2) they have identical indices, and (3) their secondary
island chains have the same spatial relationships with respect to the primary orbit.

The definition of qualitative equivalence implies two properties. First, the equivalence
relation does not preserve rotation numbers. Second, the equivalence relation by itself
does not ignore insignificant island chains. Small island chains are instead removed in
the third step, the simplification of orbit structures.

4.8.5 Determining Connectivity of Canonical Flow Patterns

In section 3.1, we saw that motion near a homocinic orbit (another name for a separatrix)
is quite complicated - points on the orbit are extremely sensitive to small disturbances.
In fact, the orbit is proven to be chaotic; its points hop from place to place in a random
manner. For a small nonlinearity, these separatrices are thin because they are bounded on
either side by KAM curves (Fig. 4.22). So these homoclinic orbits are isolated from each
other. As the nonlinearity increases, these KAM curves separating regions of chaotic
motion are distorted and eventually destroyed. The chaotic regions from neighboring
separatrices thus begin to merge. The merging of chaotic zones subsequently leads to
the appearance of global or connected chaos. The transition from local or isolated
chaos to global chaos is an important event because it signifies a sudden increase in the
relative phase space area covered by chaotic motion.
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Figure 4.22: Local or isolated chaos illustrated by the Standard Map

Because appearance of global chaos is a global property of phase portrait, a canonical
flow patter, which describes the orbit structures (locally) in some neighborhood of a
stable fixed point or stable periodic orbit, cannot by itself reveal the relevant information.
However, by examining how the canonical flow patterns are related to each other, one

can recognize the appearance of global chaos. In particular, if all canonical flow patterns

are connected - i.e., there exist some (chaotic) orbits that can move freely among the
neighborhoods of the canonical flow patterns - then barrier orbits, KAM curves that

isolate thin chaotic layers, can no longer exist. So, the connectivity of canonical flow

patterns give us a simple, geometric way of recognizing global chaos (see the bottom

panel of Fig. 4.18).

4.9 EVALUATING THE PERFORMANCE

4.9.1 Missing Small Structures

The phase portrait for an area-preserving map is considerably more complicated than

that apparent from Fig. 4.18. First of all, the Poincar-Birkhoff theorem [14] tells us

that typically there are alternating chains of elliptic and hyperbolic periodic orbits cor-
responding to eve rational rotational number (see section 5.1 and 5.2 for more detail).

Secondly, the island structures of an area-preserving map are self-similar: the geometric
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structure of islands surrounding fixed point or periodic point at one length scale is re-
peated at another length scale. To get a glimpse of this (infinite) complexity, we magnify
a small portion of the phase portrait of the Standard Map with K = 1.4 (Fig. 4.23a).
Second order island chains are seen to exist near the original large island structures.
Further magnifying one island in Fig. 4.23b reveals a third order island structure as seen
in Fig. 4.23c. This hierarchy of island structure exists in principle down to the smallest
length scale.

The complexity of island structures precludes any attempt to produce a complete
phase portrait, i.e., a phase portrait containing representative orbits for every possible
island chain or periodic orbit. Fortunately, for the purpose of a gross qualitative under-
standing of the phase space dynamics, the details of the island structures do not matter
because these higher-order structures occupy small phase space area. The kind of quali-
tative description generated by KAM is sufficient for characterizing the gross behavior of
the dynamical system under most (in the measure-theoretical sense) initial conditions.

4.9.2 What Works Well

When a phase portrait is largely made up of "interesting" orbits, such as quasiperiodic
orbits, island chains, or separatrices, KAM matches a domain expert in its ability to select
"promising" initial states. This success can be attributed to the geometric representation
of the orbits. When two neighboring orbits are inconsistent, the geometry of these orbits

delimits a bounded region in the phase space for future search. The boundedness of the
region allows the "bisection search" strategy to rapidly zero in on the desired orbits.
For instance, the region between two inconsistent quasiperiodic orbits is where island
chains can be found. Once an island chain is located, KAM tests the midpoints between
consecutive islands to look for hyperbolic periodic points and separatrix. These midpoints
become better estimates for hyperbolic points as larger islands are found because the
region between consecutive islands shrinks. We have already seen how KAM successfully

finds the thin separatrix for Henon Map with parameter a = 1.3284305 in the eighth

trial (Fig. 4.13). Such thin separatrices are of course notoriously difficult to locate by
random selection of initial states.

The bisection search strategy is found to be effective for many different phase por-
traits. In fact, in most cases where KAM fails to locate a separatrix, it is not because
KAM cannot find the correct initial state. Instead, it is because it takes too many iter-
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ates 15 to reveal the structure of the separatrix, thereby causing the Orbit Recognition
Module to fail.

4.9.3 What Does Not Work As Well

The power of the KAM's strategy for locating representative orbits lies in the pairwise
orbit consistency rules. Since a chaotic (or escape) orbit imposes no constraint on its
neighboring orbits, it stands to reason that KAM will have trouble in regions of phase
space largely occupied by chaotic (or escape) orbits. For instance, island chains that are
embedded inside a chaotic (or escape) region are difficult to find. KAM handles this
problem in a rather ad hoc way by looking for large "holes" - collections of neighboring
grid cells that are not occupied - inside a chaotic region. This fix is not adequate
because low-order island chains may occur in small unoccupied regions. Making smaller
grid cells will solve this problem but only at the expense of larger overhead in updating
grid status, and determining orbit adjacency. A domain expert has less trouble with this
problem mainly because he can recognize the internal shape of a chaotic region. KAM,
in contrast, cannot describe the number of holes and connected components that a given
two-dimensional dot pattern may have. Extending KAM's shape-recognition ability is a
good area for further research.

4.10 CONCLUSION: THESIS RESTATED

This chapter shows how the potentially infinite search problem of finding representative
orbits in a two-dimensional phase space can be effectively reduced to a simple, local con-
sistency analysis of neighboring orbits. Instead of randomly trying many initial states,
KAM carefully examines each orbit found to see if the orbit is compatible with its neigh-
bors. The compatibility of orbits is derived from one basic constraint - the continuity of
discrete flow. A simple grammar of behavior, expressed in terms of six production rules,
embodies knowledge of primitive orbits, and their modes of transition. KAM focuses
its search in regions of phase space where the geometry of orbits violates the grammar.
That KAM is able to quickly locate interesting orbit structures, such as separatrices and
island chains, is the outcome of KAM's use of a general bisection search strategy to locate
missing orbits within the phase space region bounded by the offending orbits.

"Sometimes, well over several thousand iterates are needed.
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This chapter also shows how the aggregate-partition-classify paradigm clearly
manifests the computational structure of the phase space searching problem. In the first
step, orbits are aggregated based on domain-independent, geometric knowledge about
spatial adjacency, and inside/outside relations. New orbits are added to the aggregate
until all orbits are pairwise consistent. The second step concerns the partitioning of
the aggregate of orbits into meaningful groupings. The partitioning requires a mixture
of domain-independent, geometric knowledge (for example, when one orbit encloses an-
other), and domain-specific knowledge of dynamics (for example, about the types of
primary orbits, and the structure of secondary orbits). The final step is the assignment
of semantic labels to the various groupings of orbits. Classifying the groupings is a purely
domain-specific task, depending on a notion of qualitative equivalence, which is weaker
than topological conjugacy but which is more tractable in the sense that numerical in-
variants (such as the number of secondary island chains, Rimmer island chains, etc.) can
be directly computed.

The power of the consistency maintenance algorithm, and the usefulness of the classi-
fication of phase portrait have been demonstrated by running over a hundred experiments
involving three different area-preserving maps. In each case, KAM is able to automati-
cally generate phase portraits and their qualitative descriptions that are essentially the
same as those appearing in published papers in the experimental dynamics literature.
The key insight obtained by these experiments can be stated as this: Representing be-
havior geometrically makes possible efficient automatic control of numerical ezperiments,
and high-level, qualitative interpretations of numerical data. I expect this method of
analysis - defining the primitive categories, and cataloging possible transitions among
them - pioneered by Waltz in the early seventies, and the emphasis on geometric struc-
tures to be a powerful methodology for building intelligent problem-solving partners for
scientists and engineers interested in scientific computing.
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Chapter 4 Summary

The phase portrait is an effective tool for representing qualitative
dynamics because entire solutions for many initial states are presented
simultaneously in a visually graspable format. Phase space searching
is the problem of (1) seeking representative orbits of a phase portrait,
and (2) interpreting the search results qualitatively.

Efficient search for representative orbits is implemented by a local
consistency maintenance algorithm, which maintains compatibil-
ity between neighboring orbits. The conditions for orbit compatibility
can be derived from one basic constraint - the continuity of discrete in-
compressible flow. A powerful numerical invariant, the rotation num-
ber, allows simple implementation of orbit incompatibility conditions
in terms of six production rules. When two incompatible orbits are
found, the region between the two orbits is searched for missing or-
bits. Resulting orbits are aggregated in the orbit adjacency graph,
which keeps track of the spatial relationships among orbits. The search
process is terminated when the orbit adjacency graph is pairwise con-
sistent.

To generate a concise, qualitative description of the phase portrait,
the orbit adjacency graph is Ipartitioned into groups of orbits which
are then simplified to produce the canonical flow patterns. Each
canonical flow pattern consists of a primary orbit and secondary orbits
surrounding it. Canonical flow patterns are Fclausifwed into equivalence

classes based on a notion of qualitative equivalence, which is weaker
than topological conjugacy.

The consistency maintenance algorithm, and the procedure to gen-
erate qualitative descriptions of phase space dynamics are tested with

three different area-preserving maps: the Henon Map, Bak Map, and

Standard Map. With some minor extensions to the basic algorithm,
KAM is able to automatically reproduce phase portraits and their qual-
itative descriptions that are similar to those appearing in published
papers in the experimental literature.

130



Chapter 5

Parameter Space Searching

To study the dynamics of area-preserving maps, we have been looking at their long-term
behavior. That is, we want to see the result of iterating some mapping over and over
again, and watch what happens to the orbit starting from some initial state. We have
been asking a variety of questions. Given any initial state x0 , can we predict the nature
of orbit starting from x0? For example, does it sit still? Does it repeat itself after some
period? Or, does it hop around in the phase space in a random manner? Furthermore, we
would like to know what happens if we start the system in a point near x0 . Does the new
orbit stay close to the orbit starting from x0? Does it behave in a similar way? Finally,
can we predict what most x0's do? That is, if we pick some starting point randomly,
what is the likely result?

In answering these questions, we develop insights about the dynamics of the mapping.
This way of thinking about dynamical systems we owe to Poincari. But there is an extra
layer of structure that we have not explored: we wish to see how the pattern of behavior
changes as we change the mapping - the equations of motion - a little. It is as though
the mapping describes some circuitry inside a black box with a knob that we can turn to
adjust some parameter. What we would like to do is to investigate the effects of setting
the knob to various values.

Studying the changes in patterns of behavior as some system parameter is varied is
the essence of the Parameter Space Search Problem. The problem has three parts:

* How are parameter values chosen?

9 When is searching in the parameter space terminated?
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* How are the search results interpreted and summarized?

The intuitive idea behind the solution is similar to the local consistency test developed
in last chapter. Here the interesting object is a phase portrait, a structured collection
of orbits. If two adjacent phase portraits with parameter values pi and p2 are consistent
(and we will say what "consistent" means), there is no need to search inside the interval

(pi, p2). Otherwise, a simple bisection search of the interval is used to look for missing
phase portraits that will restore the compatibility between adjacent phase portraits. The
consistent phase portraits are then grouped and classified into typical bifurcation patterns
according to the bifurcation theory for area-preserving maps.

In general, parameter space searching is a much harder problem than phase space
searching. It is more difficult for two reasons. First, it is not clear what is meant by
"adjacency of phase portraits" in a multi-dimensional parameter space. Second, we don't

have a complete mathematical theory that classifies all the possible ways in which a phase
portrait can change under small perturbations.

The content of this chapter is as follows. The first section introduces the notion of
bifurcation. Section 5.2 discusses the Fundamental theorem of Bifurcation Theory. Sec-
tion 5.3 lists the complete list of generic bifurcations of periodic points of area-preserving

maps. Section 5.4 explains how phase portrait compatibility conditions can be derived
from knowledge of generic bifurcations. Section 5.5 covers the implementation of the
basic consistency maintenance algorithm. The next two sections, 5.6 and 5.7, present
experimental results with the Henon map and the Bak map. The chapter concludes with

an evaluation of the experimental results, and an end-of-chapter summary.

5.1 WHAT ARE BIFURCATIONS?

Phenomena in nature often do one of the four things: they sit still, they grow, they

oscillate, or they hop around randomly. A bifurcation of a dynamical system is any
change in the character of its steady-state behavior as some or all its parameters are
changed. Given a small initial push, a mathematical pendulum moving in a frictionless
medium will oscillate forever. If damping is "switched on", the oscillatory behavior will

die out and eventually reach a stable rest state (though it may take an infinitely long
time to do so). The character of the steady state behavior has changed.
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This section explores the notion of bifurcation. But first we should have an intuitive
understanding of what parameters are.

Two types of variables - parameters and state variables - appear in the equations

describing a dynamical system. The categorization depends on the idea that changes of
the system can occur in two separate time scales. Parameters are those variables that
change relatively slowly, and to a first approximation are often regarded as constants.
State variables, on the other hand, change much more rapidly when compared to the
changes of parameters. The familiar mathematical model of the solar system is a good
example. Here the state variables are the positions and momenta of the planets relative
to the Sun. The masses of the planets and the Sun will be parameters in our model

because they change in a much slower time scale than the positions and momenta.

When the parameters of a system are changed gradually, the behavior of the system

usually changes in a gradual way, except at certain places where it "jumps". Think of
heating a beaker of water steadily. The temperature rises steadily until it hits 100°C and
the water boils. A sudden change in state of matter occurs - water turns into steam.
Physicists call this a phase transition, a macroscopic change in state due to reorga-
nization at the molecular level. So a gradually changing cause can produce a sudden

qualitative change in behavior.

As another example, consider adding weights to the top of a vertical, elastic column.

With a light weight, the column compresses a little. When the weight is gradually

increased, the column suddenly buckles to one side or the other. The vertical equilibrium
position of the column has become unstable - a slight disturbance will move the column
into a new stable state, one of the two buckled positions. So increasing the loading causes
both the number of steady state behavior and their stability properties to change. In
other words, a bifurcation has occurred.

Sometimes a bifurcation can move a system from a static equilibrium state to a

steady oscillation. Perhaps the most well-known example of such bifurcation occurs in a
mathematical model of the vacuum tube which was studied in the 1920s by van der Pol.
The vacuum tube is modeled as a simple RLC-circuit except that the resistor is described
by a nonlinear relation between the voltage and current. An adjustable parameter, a
characteristic of the vacuum tube, controls the resistance or "damping" of the resistor.

When the parameter is small, the damping is positive. The system dissipates energy, and
one expects the amplitude of current to decay. This means if we start the system near
an equilibrium state, it will move towards the equilibrium state. That is, the equilibrium

state is stable.
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However, as the parameter is increased to some critical point, the damping becomes
negative for small amplitude of current. Far away from the equilibrium state, the effect
of large amplitude of current still dominates; damping remains positive. It follows that
the equilibrium state is not stable because nearby initial states drift away from it. In

place of the unstable equilibrium state, an oscillation will build up at certain amplitude
where the two effects of opposite tendency - negative and positive damping - balance

out. In other words, the system begins to wobble. The basic mechanism for the creation
of a steady oscillation when the rest state loses its stability is called a Hopf bifurcation
[9], after Eberhard Hopf.

Now that we have seen some fairly standard examples of bifurcation, we should seek a
deeper understanding of such processes. We'll start with the Henon area-preserving map.
Unlike the previous examples, it is not a model of any physical system. It is a purely
mathematical construct intended to illustrate the typical bifurcations that a Hamiltonian
system with two degrees of freedom can run into. Like any good example, the Henon Map
captures the essence of the process in its simplest form, avoiding needless complications.

As noted in Chapter 3, a phase portrait represents the motion of all possible initial
conditions corresponding to a given value of the parameter. The phase portrait is made
up by fixed points, periodic points, island chains, KAM curves, and chaotic orbits. Now

imagine making adjustments to the parameter gradually. The phase portrait changes a
little - some island chains may grow while some may shrink, or some KAM curve may
become distorted - but qualitatively the main features remain the same. Then, at some
critical value of the parameter, something drastic happens to the phase portrait. We
may see a fixed point losing its stability, or an island chain disappearing, or a whole

new island chain appearing, or a KAM curve breaking up. A bifurcation is taking place.
The new phase portrait persists for some range of the parameter values, and another
bifurcation occurs. This alternating persistence and bifurcation of phase portraits can
repeat infinitely many times.

Let us look at the specific bifurcations that actually occur in the Henon Map. In

Fig. 5.1a, we notice a pair of period-5 orbits. One of them is stable - the periodic orbit

sits inside a large 5-island chain. The other one is unstable, sitting between successive

islands. If we carefully iterate the mapping for different values of a, we will find that the
5-island chain is created at a = 1.27, reaches its maximum size at 1.33, and disappears

at 1.48.

If we continue increasing a to about 1.58, two period-4 orbits appear (Fig. 5.1b).
Again the stable period-4 orbit is inside a 4-island chain. The island chain grows until
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a reaches 1.59. Then, the last KAM curve surrounding it breaks up at 1.60. As a is
further increased, the shrinking islands move deeper into the chaotic region. By 1.65 the
island chain has vanished.

The range of a values from 0 to 2 is not very interesting from the point of view
of dynamics. Pick any a in this range, and iterate the mapping. You'll find that the
fixed point at the origin remains stable - it is surrounded by closed curves. The island
structures around the fixed point may change, but the position and stability of the fixed
point do not.

When we increase a to slightly beyond 2, something dramatic happens. Just inside
the tips of the outermost starfish-like orbit, two period-3 orbits appear (Fig. 5.1d). One
of these is stable, and gives rise to the 3-island chain. The other one is unstable. But
unlike the unstable periodic orbits we have just seen, the three unstable periodic points
are placed between each island and the fixed point at the origin. As we keep pushing a,
these unstable points approach the fixed point, collide with it, and emerge again as a new
period-3 orbit whose orientation differs from that of the old one by 1800 (Fig. 5.1e,f).
The fixed point at origin has momentarily turned unstable during the collision. That
means, even if we start the system exactly at the fixed point, a tiny push to the system
will cause it to move away from the fixed point permanently.

Increasing a beyond 2.12 does not produce any new type of bifurcation. What hap-
pens is the regular region around the fixed point at origin continues to grow. Bifurcations
of periodic orbits (with period 7 and 12), not unlike that of the period-4 and period-5
orbits that we have seen, occur at approximately 2.8.

A pair of period-n orbits (with n >_ 4) appearing near the vertices of a regular n-gon
around the elliptic fixed point, a pair of period-3 orbits bifurcating from the a KAM
curve with cusp-like tips, and an unstable period-3 orbit colliding with the elliptic fixed
point - these three types of bifurcation are all one can find in our particular map, the
Henon Map.

But the Henon Map is special: the fixed point at origin is always stable except at one
value of a. This special property prevents bifurcations due to the loss of stability of the
fixed point - e.g., the creation of a stable periodic steady state - to occur. It is therefore
instructive to look at a mapping which has a fixed point that loses its stability at some
critical parameter value and that remains unstable for a range of parameter values. For
this purpose, let us turn to the Bak Map [4] (Fig. refbak-eqn).
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Zn+1 = -Y, + Zn(az2 - a + 2)

Yn+1 = Zn

Range of x: (-z: )

Range.o a: (06)
Escape range: (-2 2)

Figure 5.2: The Bak Map: a mathematical model of metal-insulator transitions in Peierls

systems.

The Bak Map has a fixed point at the origin. By a simple calculation, we can show
that the fixed point is stable for a < 4 and becomes unstable for a > 4. Better still we

can see it geometrically by looking at the phase portraits for a around 4 (Fig. 5.3). When
a = 3.98 the fixed point is surrounded by elliptical closed orbits; so the fixed point is

stable. However, when a = 4.02 two orbits appear to cross at the origin. This is known

as a saddle or a hyperbolic fixed point. Actually the orbits do not cross; something

much more interesting happens (see section 3.1).

For now let us figure out where the stable steady state goes. If we look at the phase

portrait again, we see that there is a period-2 orbit near the unstable origin. Pick a point

close to one of the two periodic points. The iterates of that point will flip alternatively

between these two periodic points.

If we increase a to 6 the period-2 orbit also becomes unstable, and a pair of period-two

orbits appear. One of these period-2 orbits is stable. It too goes unstable at about 6.242,

and a period-4 orbit appears (Fig. 5.4). By 6.271 the period has doubled again to eight.

By 6.274 it has reached 16, and thereafter we get a rapid sequence of doublings of period

to 32, 64, ... One can follow this period-doubling cascade for no more than a few stages

because very soon the roundoff error will ruin the accuracy of the computation. I

What happens after this infinite sequence of period-doublings is a little bit unclear

because as the period doubles, the regular region around the stable periodic orbit is

'If you really insist, I can tell you that period-128 orbit goes unstable at 6.274515062, and the
period-256 orbit at 6.2745150609.
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Figure 5.3: Period doubling in the Bak Map: bifurcation of a fixed point into a period-2

orbit.

shrinking rapidly. When the period has doubled infinitely often, the fraction of phase

space occupied by island chains is so tiny that following them numerically becomes prob-

lematic.

In a few pages we will see that, roughly speaking, one-parameter area- preserving maps
possess some or all of these bifurcations, and typically nothing else. Several of these

bifurcations can coexist, but we won't find anything more complicated. We will discuss
these four types of bifurcation; but first, we need an important theorem in bifurcation
theory which tells us when things don't change.
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Figure 5.4: Period doubling in Bak Map: bifurcation of a period-2 orbit into a period-4
orbit.

5.2 CORE IDEA: STRUCTURAL STABILITY

A bifurcation is any change in the qualitative properties of a dynamical system. Bi-
furcation theory is concerned with the change in the number of steady state solutions,
their stability, and how they are connected as the governing equations are changed. It is
an active research area in Dynamical Systems Theory because many questions are still
open. For instance, we have little idea about how complicated steady state solutions
- e.g., chaotic orbits, bifurcate. We also know very little about global bifurcation,
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which studies how the connections among steady state solutions in the phase space can
change. So in this section I will confine the discussion to the simplest cases of bifurcation:

bifurcation of fixed points and periodic orbits.

Now one may ask a very natural question: what is the list of typical ways for a fixed
point of an area-preserving map to bifurcate? By examining the Henon map and Bak
Map, we had already made a start on this. We have found four possible bifurcations:
a pair of period-n (n > 4) orbits surrounding the fixed point, a pair of period-3 orbits
bifurcating from a closed curve, the fixed point colliding with an unstable period-3 orbit,

and period-doubling.

But how do we know these four are all the typical bifurcations? It's not hard to
imagine other types of bifurcation. For instance, might not a fixed point lose its stability

to a pair of stable fixed points instead of a stable period-2 orbit? Or, similarly why aren't
period-tripling or period-quadrupling (or other period-multiplying) typical?

To resolve questions like these, one must have a clear sense of the word "typical".
The idea is that it is not true that any bifurcations that can occur in area-preserving
maps must be one of these four. For example, it is easy to concoct systems with special
symmetries that have more complicated bifurcations. The Bak Map, which has Rimmer

bifurcations, is a good example. If one tries to list all possible bifurcations that can

happen, one will soon find that the task is infinitely difficult. There will be infinitely

many different kinds of bifurcations, and most of them will be very complicated. It is far
simpler to analyze those that arise often, and avoid the rare exceptional ones.

Another caveat: what is typical depends on the space of systems you are talking
about. Bifurcations typical in an area-preserving map behave quite different from those
typical in a non-area-preserving map. And bifurcations typical in a many-parameter

area-preserving map, may not be typical in a one-parameter area-preserving map.

Enough precautions. Let us turn to the typical bifurcations of area-preserving maps.

This discussion could be made perfectly precise and much more elegant - but at the ex-

pense of technicalities, like normal forms, that are not suitable for this level of discussion.
I'll explain all the typical bifurcations of a fixed point, and how one can tell if a given
map is undergoing one of these bifurcations.

The idea is to study some simple systems that we completely understand and use

them to understand complicated systems that we don't. The simplest area-preserving

maps are the linear ones. From linear algebra, we know that linear mappings can be
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represented as matrices. Moreover, the theory of Jordan Canonical Forms tells us that
any real 2 x 2 matrix is related by a similarity transformation to a simple matrix that
has one of the three canonical forms:

0 A2 b a 1 A

I II III

Linear area-preserving maps form a subclass of all linear transformations. If such a
mapping is used to transform any region of the phase space, its area remain unchanged
after the transformation. That means, the determinant of the transformation must be
1. This special property implies a constraint on the eigenvalues, namely, the product of
the eigenvalues must also be 1. So the eigenvalues are either real numbers (A and j-) or
complex conjugates on the unit circle of the complex plane.

To get a feel of what these transformations do, we let them act on a unit square in
the euclidean plane (Fig. 5.5).

For type I, real and distinct eigenvalues, let's assume A, > 1 > A2. 2 (The case when
the As are negative is explained in a similar way.) Under the action, the unit square
is stretched horizontally, and squeezed vertically. The eigenvalues control the amount
of stretching or squeezing. Mathematicians have generalized this idea of stretching and
squeezing to higher-dimensional systems. Mappings that stretch any region in phase
space along some directions, and squeeze along the remaining directions are called hy-
perbolic. The notion of hyperbolicity is quite general; it applies to not just Hamiltonian
systems, but dissipative systems as well.

The hyperbolic maps have a very important property: they are structurally stable.
The idea was invented by Aleksandr Andronov, a Russian mathematician, in the 1930s. A
structurally stable system is one whose behavior does not change if you make sufficiently
small change to the equations. That means, any system close to the original system will
have the same number of fixed points and periodic points. Moreover, the stability of the
fixed points and periodic orbits won't change.

We need to be careful here. Structural stability is a quite different idea from stability
of a steady state of a system. A steady state is stable if it is stable with respect to

2Recall that the eigenvalues of a diagonal matrix are the diagonal elements.
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Stretch horizontally
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Type II Rotate rigidly
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Type M Shear vertically

Figure 5.5: How linear area-preserving maps act on a unit square

small changes in the initial condition. But structural stability is a property of the whole
system. A system is structurally stable if it is stable with respect to small changes in

142



the equations. So, for instance, the origin is an unstable fixed point of a type I map,
but the map itself is structurally stable. A small perturbation to the map may cause the

eigenvalues to move around a bit, but the stretching and squeezing actions still remain.

For type II, complex eigenvalues with unit modulus, the action is a rigid rotation. The
square is rotated by some angle about the origin. Are area-preserving maps with complex

eigenvalues structurally stable? This is a natural question to ask. But the answer is no.

To see why, let us consider the case when the angle of rotation is some rational
multiple of 27r. Here we take the unit of angular rotation to be 27r radian. So let's say
the angle of rotation is 1. Then after 3 successive rotations the unit square will come
back exactly to where it started. In general, if the rotation is M, then every point will

map to itself after n applications of the transformation. In other words, we have lots of

period-n orbits around.

Suppose the map is perturbed a little. It is still acting like a rigid rotation because
the eigenvalues are still complex. But the angle of rotation need not be rational anymore.

It can become irrational. That means, instead of periodically coming back to the same

position, the motion will never repeat exactly. It does however almost repeat in the sense
that a point can come arbitrarily close to the initial state. This is why mathematicians

use the word "quasiperiodic" to describe this type of motion.

Now we can see why a type II map is not structurally stable. A tiny change to the
equations may cause a system that rotates with a rational angle to lose all its periodic
orbits, and moves in a quasiperiodic manner.

For Type III, real and equal eigenvalues with modulus 1, the action is a shearing.

The unit square is sheared in the y-direction. Mappings having a double eigenvalue are

quite atypical: tiny changes to the equations will separate the two eigenvalues, creating

either a type I or a type II map. If type I and type II are coins landing heads or tails,

then type III is a coin landing on its edge. In principle, it can happen. In practice, it

doesn't.

What do we learn from these simple mappings? That eigenvalues of a linear mapping

are the important quantities to look at. First, they determine what type of action the

mapping induces. Second, mappings with eigenvalues not on the unit circle of the complex

plane are the structurally stable ones.

These two observations are remarkable because it turns out that they hold true even

for nonlinear mappings under some reasonable conditions. I'll be more precise about
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this. But first we have to generalize the idea of eigenvalue to nonlinear mappings. We
know what eigenvalues of linear mappings are. To deal with a nonlinear mapping, one
somehow approximates it - at least locally - by a linear mapping. A familiar trick in
mathematics. Since the behavior around fixed points are the simplest to understand, it
is natural to study the relationship between the linearization of the mapping at a fixed
point and the full mapping itself. The hope is that the eigenvalues of the linearization of
the mapping about a fixed point - the multipliers of the fixed point, for short - will tell
us a lot about the behavior of the actual mapping, at least in a sufficiently small region
around the fixed point.

We can't discuss the relevant theorem in this section until we have a clear idea of
what is meant by "changing a map a little". The standard mathematical setup is to use
a family of mappings depending smoothly on a (real) parameter a.

Suppose g, : R" --+ R' is a smooth one-parameter family of mappings, and x0 is a
fixed point of g,. In other words, at one parameter value ao, the map has a fixed point
at Zo. The questions we'd like to ask in Bifurcation Theory are: What does a map g"
look like for some a close to ao? Does the new map have a fixed point? If so, is the fixed
point like x 0? Is it near zo?

In the early 1960s, Stephen Smale and Philip Hartman proved a general theorem [9]
- it applies to both Hamiltonian and non-Hamiltonian systems - which implies, among
other things, that if g,, has a fixed point x0 with no multipliers equal to +1, then any g ,
with a close to ao will have the same number of fixed points near x0 . This is a powerful
theorem. It says if we compute the multipliers of a fixed point and find out that none
of them is +1, then we can conclude that a tiny change to the mapping will leave the
number of fixed point unchanged. In other words, the original fixed point will not vanish,
and no new one appears as we perturb the mapping a little.

The theorem, however, does not guarantee that the stability of the fixed point will be
unchanged. We have already seen an example of this in the Henon Map. Around a = 2,
the multipliers of the fixed point at origin are purely imaginary: +0.333i and -0.333i.
They satisfy the hypothesis of the theorem. We therefore expect that for a close to 2,
Henon map should have one fixed point near origin. This is true. In fact, the fixed point
is always at the origin. On the other hand, we have seen that the fixed point momentarily
turns unstable when it collides with a period-3 orbit. So the stability of the fixed point
is not preserved.

It turns out that a simple extension to the theorem guarantees that both the number
and stability of the fixed point will remain unchanged under small perturbation. The
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stronger version goes like this. If the g, 0 has a hyperbolic fixed point z0, i.e., none of its
multipliers has modulus 1, then any g. with a close to ao will have the same topological
structure locally around the fixed point. In other words, hyperbolic fixed points don't
change under small perturbation; they are structurally stable properties.

The Smale-Hartman theorem is so important that some dynamical theorists refer
to it as the Fundamental Theorem of Bifurcation Theory. Essentially it tells
us when nothing interesting happens. So to look for bifurcations we'd better focus on
non-hyperbolic fixed points.

5.3 GENERIC BIFURCATIONS OF FIXED POINTS

"Generic" is just a fancy term for "typical". Mathematicians have found the idea of
ignoring the rare, degenerate cases - situations that can arise in principle, but not in
practice - so useful that they feel the need for inventing a technical term for it. In this
section, I will go through the list of generic bifurcations of fixed points. This piece of
mathematical knowledge is essential for KAM because it is the basis for KAM's automatic
search and interpretation for the bifurcation patterns.

The Fundamental Theorem is a valuable tool in Bifurcation Theory; it has some
interesting consequences.

The first major consequence is that a bifurcation theory for fixed points of mappings
will give us, for free, a bifurcation theory for periodic points of mappings. The reason is
simple: a period-n point of a mapping is the same as the fixed point of a new mapping
that is obtained by composing the original mapping with itself n times. In other words,
suppose zo is a period-n point for a mapping go0 , i.e., gn0 (zo) = zo. Define a new mapping

f-0 = go. Then we have f'.(zo) = zo.

So if we want to study the status of the period points of g,., we can equivalently
study the status of the fixed point of fa0. Using the Fundamental Theorem, we conclude
that the persistence and stability of the periodic points of g.. are determined by the
multipliers of the fixed point of the mapping gn0 . In particular, if none of the multipliers
of x0 is +1 , then the number of the periodic orbits for g. is unchanged under small
perturbation.

This relationship between periodic orbits and fixed points also gives us a hint regard-
ing the classification of typical bifurcations. The idea is that whenever any multiplier of
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a fixed point of g.0 is equal to +1, the number of period-n orbits can change. In other
words, new periodic orbits can appear whenever any multiplier of a periodic point of g,,
passes through an nth root of unity. Recall the first root of unit is +1, the second roots

are +1 and -1, the third are +1, e2" 3 e2,, and so on.

Let us acquaint ourselves with the list of generic bifurcations now.

A = +1: Extremal Bifurcation

A fixed point can lose its stability by colliding with an unstable fixed point. This is
known as the extremal bifurcation (Fig. 5.6). At the moment of collision both fixed
points disappear, and a quasiperiodic orbit with cusp-like tips is formed. The number of
fixed points changes after the bifurcation.

Let us see what happens. As the parameter is varied, the stable fixed point gets
closer to the unstable one. Its domain of stability, i.e., the set of points whose orbits will
stay close to the fixed point, shrinks. That means, a small perturbation to the system
will pull it away from the neighborhood of the fixed point. The system will go to some
new stable steady state which need not remain close to the old equilibrium position.
Physicists describe this situation as a hard loss of stability because a smooth change of
the parameter results in a stiff "jump" of the motion.

If the parameter is changed in another direction, then the same phenomenon is de-
scribed by the birth of a pair of fixed points - one stable, the other unstable - from a
quasiperiodic orbit with cusp-like tips.

A = -1: Period-Doubling Bifurcation

Period-doubling (Fig. 5.6) describes a second way in which a stable fixed point can
lose its stability: it does not "die" but instead transfers its stability to some periodic
steady state. As the parameter is varied, the fixed point is becoming hyperbolic. At the
critical parameter value where the fixed point turns hyperbolic, a stable period-2 orbit is
created. The system moves from a stable equilibrium to a stable periodic steady state.
Unlike the extremal bifurcation, the loss of stability here is soft because immediately
after the bifurcation the oscillating behavior stays close to the fixed point. In this sense,
the behavior of motion changes continuously.
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Bifurcation Flow Pattern
Type

extremal bifurcation 0-)

period doubling

A 0

phantom 3-kin

xx

phantom 4-kim i-( x E

0,

3 0
Poincar,&Birklioff 0:

Figure 5.6: Five generic bifurcations for one-parameter area-preserving maps. Dots (e)
indicate elliptic fixed points. Circles with a dot inside (0) stand for islands. Crosses (x)
are hyperbolic fixed points.
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Notice that unlike the extremal bifurcation the number of the fixed point does not
change during the period-doubling. This follows from the Fundamental Theorem because
the multiplier is not +1.

e 3 : Phantom 3-Kiss

There is a third way for a fixed point to lose its stability, namely, by colliding with an

unstable period-3 orbit. This type of bifurcation is called a phantom 3-kiss (Fig. 5.6).
"3-kiss" seems clear enough: three periodic points kissing the fixed point. The word
"phantom" seems to convey some devilish consequence of the kissing - the fixed point is

no longer visible as its domain of stability vanishes. Well that's my theory anyway.

The phantom 3-kiss also results in a hard loss of stability. The system jumps to a

new steady state that can be arbitrarily far away.

A = e2ir, n > 5: Poincar6-Birkhoff Bifurcation

Poincar6-Birkhoff bifurcation occurs most frequently. It happens when the multiplier
of a fixed point goes through an nth root of unit (n > 5). The result is the creation
of a pair of period-n orbits: one stable, one unstable. The stable periodic points are

embedded inside an n-island chain (Fig. 5.6) surrounding the fixed point. The unstable
periodic points sit roughly in between two successive "tips" of the islands. To understand
this, let us turn to the mechanism behind the creation of the island chain.

If the mapping is linear, then every point in the phase space will repeat itself after n
applications of the mapping. So there are infinitely many period-n orbits, and they lie on
concentric circles about the fixed point. Suppose you add a small amount of nonlinearity
to the mapping in such a way that the new mapping is still area-preserving. What will

happen to these circles of periodic points?

To see what happen, let's split the nonlinearity into two components: tangential and

radial. This is useful because these two components have different effects. The tangential

component affects the amount of rotation of the circles; the radial distorts the shape of
them.

Consider first the effect of the tangential perturbation. It changes the amount of
rotation on the circles depending on their radial distances from the center. For instance,
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circles farther away may rotate with a larger angle than those near the center. Let's call
the amount of rotation the rotation number of the circle. In a small region around
the fixed point, we will assume the rotation numbers change continuously as a function
of the radial distance. This is not a very restricted assumption because a large class

of mappings, called twist mappings, have this kind of behavior; they map circles into

circles but with the rotation number (i.e., the twisting) dependent on the radius of the
circle.

With tangential perturbation alone, we will have one instead of infinitely many circles

that have rotation number exactly equal to . But there are still infinitely many period-n
points left because every point on this particular circle is periodic. Now consider adding

the radial perturbation, which alters the shape of the circles. We might expect these

periodic points all to be destroyed. It turns out this is not the case. In general, at least
one pair of period-n orbits survives the perturbation. This statement is in essence the

content of a theorem first conjectured by Poincari and later proved by George Birkhoff
in the 1930s [14].

A - e2 '1 : Phantom 4-Kiss/Poincar-Birkhoff

What makes this situation interesting is that there are two types of bifurcation asso-

ciated with a multiplier passing through a fourth root of unity. Which type will occur

depends on the higher order nonlinear terms of the mapping.

The first type is called the Phantom-4-kiss (Fig. 5.6). It is not really a new type of

bifurcation. It looks just like the Phantom-3-kiss except that an unstable period-4 orbit,

instead of a period-3, approaches and collides with the fixed point. Like the "3-kiss", the

"4-kiss" also results in a hard loss of stability.

The second type is a Poincari-Birkhoff bifurcation of a 4-island chain. Unlike the

Phantom-4-kiu, the fixed point remains stable during the bifurcation.

Typically, that's it

Kenneth Meyer proved a theorem [19] to the effect that typically only these five

types of bifurcation occur in a one-parameter area-preserving map. Physicists often call

the first four types - extremal, period-doubling, phantom 3-kiss, and phantom 4-kiss -
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bifurcations under strong resonances. "Strong" in the sense that the stability of the fixed
point is destroyed by the bifurcation. The Poincari-Birkhoff bifurcation, on the other
hand, corresponds to weak resonances because the creation of a pair of periodic orbits
does not change the stability of the fixed point that undergoes bifurcation.

Rimmer Bifurcation

One final type of fixed point bifurcation deserves attention: the Rimmer Bifurcation,
after Russell Rimmer who proves that such bifurcation is typical for reversible map-
pings [26], which are mappings that have special symmetry properties (see section 4.7.2).
Here at the point of bifurcation, a stable fixed point splits into two new stable fixed points

- one on each side of the original fixed point. The picture looks like a period-doubling
except that two new fixed points appear instead of one new period-2 orbit. Thus before
the bifurcation, the system has one stable fixed point; after the bifurcation, it has three

- two stable, one unstable.

The Rimmer Bifurcation also has a weak-resonance analogue: it gives rise to twice as
many periodic orbits as the Poincar6-Birkhoff bifurcation. In the Bak Map, for example,
it is observed that the fixed point at the origin spits out an n-island chain when the
multiplier passes through an nth root of unit where n is odd, but two alternating n-
island chains where n is even.

Rimmer bifurcations are not typical in a general area-preserving map. However, it is
often found in mappings with odd symmetry, i.e., f(-x,-y) --+ -f(x,y). An example of odd
symmetry is the Bak Map. The property of odd symmetry implies the origin is a fixed
point for all parameter values. Since the extremal bifurcation contain parameter values
for which there is no fixed point near the point of bifurcation, the type of bifurcation that
occurs in such situation (A = +1 with symmetry) is going to be qualitatively different

from that without any symmetry conditions imposed.

5.4 PHASE PORTRAIT COMPATIBILITY

Bifurcation theory involves many difficult mathematical theorems. To capture all of
this knowledge in a computer program is not a simple task. Fortunately, applying the
classification results of generic bifurcations does not depend on a detailed understanding
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of the proofs of these theorems. In this section, I will describe how the knowledge of
the typical bifurcations allows us to formulate simple rules that decide when two flow
patterns are inconsistent. We say two flow patterns are consistent if the difference in
their topological structures can be explained by a typical bifurcation.

5.4.1 Pairwise Portrait Consistency

The key strategy that underlies KAM's search for bifurcation patterns in the parameter
space is to focus the search in regions where the neighboring phase portraits have flow
patterns that are inconsistent. I will explain the rules for deciding flow pattern inconsis-
tency. But first, let me describe a few more things about the input to the program that
carries out parameter space searching: a canonical flow pattern.

The canonical flow pattern was introduced in Chapter 4 as a data structure for repre-
senting the essential qualitative features of a phase portrait. For example, orbits that are
redundant - such as the non-maximal island chains, and the non-maximal quasiperiodic
orbits - are removed to simplify the description. A canonical flow pattern is a group of
essential orbits surrounding some primary orbit. The primary orbit can be a stable fixed
point or a stable periodic orbit. In the former case, the canonical flow pattern is denoted
by the symbol F-FLOW-PATTERN; in the latter, by P-FLOW-PATTERN. Within each
of these two categories, a canonical flow pattern is further characterized by four indices
(m, n, p, q) which, among other things, indicate the number of island chains it has, and
the number of those island chains that are bounded by some closed curve.

For an example, consider the flow pattern in Fig. 5.7. It has two island chains, a 5-
island chain and a 6-island chain, surrounding a fixed point. The outer island chain is not
bounded by any closed curve. So the flow pattern is classified as a F-FLOW-PATTERN-
2-1. For brevity, I'll usually drop the prefix "F-" if it is unambiguous in context as to
which category of flow pattern I am referring. The period of a flow pattern is the list
of the periods of the island chains that the flow patt-rn has. In this example, the period
is (5 6). If the flow pattern does not have any island chain, then the period is NIL, the
empty list.

We also need a measure of how large a flow pattern is. The area of a flow pattern
is the area, in some normalized unit, of the region in phase space that is occupied by
quasiperiodic orbits or island chains. In this example, the area is obtained by summing
the area enclosed by the closed curve, and the area enclosed by the 6-island chain. If
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FLOW-PATTERN-2-1

periods = (5 6)
roion number = ((1/5 1/4) (1/6 1/5))0 02

0 rotation number = (1/5 1/4)

o00 0

Outer period =6

Outer rotation number = (1/6 1/5)

Figure 5.7: This picture illustrates two important quantities of a flow pattern: period
and rotation number. The fow pattern has a 5-island chain and a 6-island chain. Its
period is (5 6). Its rotation number is the list of rotation number bounds of its maximal
quasiperiodic orbits.

the flow pattern does not have any unbounded island chain, then the area is simply that
enclosed by the outermost closed curve surrounding the fixed point.

One final quantity is needed: the rotation number of a maximal quasiperiodic orbit.
Rotation number is an important quantity because it tells us where to look for an island
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chain (see section 4.3). The rotation number of a flow pattern is the list of all rotation
number bounds for its maximal closed orbits. Take the flow pattern in Fig. 5.7 as an
example. It has two maximal closed orbits. The inner one has rotation number E (I, 1 );
the outer one E ( , k). So the rotation number of the flow pattern is ((I., ), (, "

Two rotation numbers are called farey adjacent if there is no rational with a small
denominator (< 8 for this implementation) in the farey ordering. In this example, the two

rotation numbers are not farey adjacent because a rational with small denominator, 1,
is between them. When two quasiperiodic orbits have farey adjacent rotation numbers,
there is not going to be any low-order island chain between them.

I will divide the rules for determining inconsistency into two groups: (1) those that
are useful heuristics, and (2) those that are consequences of the bifurcation theory.

Inconsistency Rules that are heuristics

Fig. 5.8 shows the two heuristic rules for determining flow pattern inconsistency. The
first one is the large size difference rule, which says if two flow patterns differ greatly
in size, then they are not consistent.

The second rule introduces the term "maximal flow pattern". This is just a fancy
term for a flow pattern that does not sit between two other flow patterns. In other words,
given a sequence of flow patterns ordered by their parameter values, the maximal ones
are the first and last one in the sequence. The purpose of the second rule is to extend
the search to cover the part of the parameter region near one of its endpoints.

The non-maximal parameter rule is not invoked until all the pairwise inconsistency
rules have been tried. This rule ordering gives a higher priority to finding missing flow
patterns between inconsistent neighboring flow patterns.

The next group of rules are based on knowledge of rotation number and generic
bifurcations. I will divide them into two sub-groups: the strong resonance bifurcations,

and the weak ones.

The first sub-group has four rules (Fig. 5.9). The first rule is a general rule. The
remaining three are the strong resonance rules. Th, jualitative equivalence rule says
that two flow patterns are consistent only if they qualitatively equivalent (i.e., have
the same primary and secondary orbits), and their respective rotation numbers are farey

adjacent.
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RULE 001 Large size difference
If A and B have very different sizes (more than a factor of 3)
then they are not consistent

RULE 002 Non-maximal parameter
If (1) A is a maximal flow pattern

(2) the distance between the parameter value of A and the closest
parameter bound is less than certain threshold (1%)

then A is not consistent

Figure 5.8: Two heuristic rules for determining flow pattern inconsistency.

The period-doubling rule says a F-FLOW-PATTERN is not consistent with a P-
FLOW-PATTERN unless the primary orbit of the P-FLOW-PATTERN is periodic with
period 2.

For the phantom-3-kiss and the phantom-4-kiss bifurcation, we notice that immedi-
ately before and after the critical parameter value at which collision occurs, the flow
patterns are qualitatively equivalent, and their rotation numbers are farey adjacent. The
only difference is that the orientation of the pattern changes. For example, the triangle-
like closed curve in the phantom-3-kiss rotates 180* after the collision. The purpose of
the phantom-3-kiss rule and the phantom-4-kiss rule is to allow KAM to look for

the flow pattern corresponding to the critical parameter value.

Computing the orientation of a triangle-like or a square-like closed curve requires
two steps. First, find the locations on the curve that have locally maximal curvature.
They correspond to the "tips" of the curve. Second, calculate the angular positions of
these locations with respect to the horizontal axis. The orientation of the closed curve
is defined as the mean of these angles. The orientation of a flow pattern is then the

orientation of its outermost closed curve.

The phantom-3-kiss rule says if the orientations of the two flow pattern differ by
more than 45*, then they are not consistent. The phantom-4-kiss rule has a similar

explanation.

The final group of rules (Fig. 5.10) implements the idea behind the Poincar&Birkhoff

bifurcation. It requires that two neighboring flow patterns differ by at most one in the
number of island chains that they have. There are a few details in these rules concerning

154



RULE 003 Qualitative Equivalence
If (1) A is qualitatively equivalent to B

(2) their respective rotation numbers are not farey adjacent
then they are not consistent

RULE 004 Period-doubling
If (1) A is a F-FLOW-PATTERN

(2) B is a P-FLOW-PATTERN
(3) the period of the primary orbit of B is not equal to 2

then they are not consistent

RULE 005 Phantom-3-kiss
If (1) both A and B are phantom-3-kiss patterns

(2) A is flow-pattern-0-0
(3) B is flow-pattern-0-0
(4) A and B have very different orientations (450)

then they are not consistent

RULE 006 Phantom-4-kiss
If (1) both A and B are phantom-4-kiss patterns

(2) A is flow-pattern-0-0
(3) B is flow-pattern-0-0
(4) A and B have very different orientations (300)

then they are not consistent

Figure 5.9: Inconsistency Rules for Qualitative equivalence, and the strong resonances.

the number of unbounded island chains and rotation numbers, but we don't have to
worry about them now.

We have seen all the inconsistency rules for F-FLOW-PATTERN. There is an analo-
gous set of rules for P-FLOW-PATTERN, but they do not involve any new idea.

5.4.2 Suggestion Rules

The purpose of the suggestion rules is to propose new candidate parameter value for
further exploration. Since the search space is one-dimensional, the suggestion rules here

are much simpler than those for phase space searching. Two suggestion rules seem to
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RULE 007 Poincare-Birkhoff-1
If (1) A is flow-pattern-2-2

(2) B is flow-pattern-2-1
(3) A and B do have the same periods

then they are not consistent

RULE 008 Poincare-Birkhoff-2
If (1) A is flow-pattern-2-2

(2) B is flow-pattern-i-1
(3) the period of B is not the same as any of the periods of A

then they axe not consistent

RULE 009 Poincare-Birkhoff-3
If (1) A is flow-pattern-2-1

(2) B is flow-pattern-2-0
(2) A and B do have the same periods

then they are not consistent

RULE 010 Poincare-Birkhoff-4
If (1) A is flow-pattern-2-1

(2) B is flow-pattern-i-1
(3) the period of B is not the same as the inner period of A

then they are not consistent

RULE 011 Poincare-Birkhoff-5
If (1) A is flow-pattern-2-1

(2) B is flow-pattern-1-0
(3) the period of B is not the same as the outer period of A

then they are not consistent

RULE 012 Poincare-Birkhoff-6
If (1) A is flow-pattern-2-0

(2) B is flow-pattern-1-0
(3) the period of B is not the same as the inner period of A

then they are not consistent

Figure 5.10: Inconsistency Rules for Poincare-Birkhoff bifurcations.
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RULE 013 Poincare-Birkhoff-7
If (1) A is flow-pattern-i-1

(2) B is flow-pattern-1-0
(3) the period of B is not the same as the period of A

then they are not consistent

RULE 014 Poincare-Birkhoff-8
If (1) A is flow-pattern-i-1

(2) B is flow-pattern-0-0
(3) the outer rotation number of A is not farey adjacent

to the rotation number of B
then they are not consistent

RULE 015 Poincare-Birkhoff-9
If (1) A is flow-pattern-i-0

(2) B is flow-pattern-0-0
(3) the rotation numbers of A and B are not farey adjacent

then they are not consistent

RULE 016 Poincare-Birkhoff-1O
If (1) A has two island chains

(2) B has no island chains
then they are not consistent

RULE 017 Poincare-Birkhoff-11
If (1) A has two bounded island chains

(2) B has no bounded island chains
then they are not consistent

RULE 018 Poincare-Birkhoff-12
If (1) A is flow-pattern-2-0

(2) B is flow-pattern-i-1
then they are not consistent

Figure 5.10: (cont.) Inconsistency Rules for Poincare-Birkhoff bifurcations.

suffice. The first rule handles pairwise inconsistent flow patterns. It simply suggests the
midpoint of the parameter values of the two offending flow patterns. The second rule
handles a maximal flow pattern. Again, it suggests the midpoint between the parameter
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value of the offending flow pattern and the closest boundary of the parameter space.

5.5 IMPLEMENTATION

The parameter space search algorithm is formally very similar to the phase space search
algorithm. In either case, KAM computes the adjacency relations among some basic

objects. Each of the adjacency relations is checked against a list of inconsistency rules. If

an adjacency relation is inconsistent, then the system looks for missing objects inside the
region between the inconsistent objects to restore compatibility among adjacent objects.

KAM continually searches for new objects until all the objects are pairwise and singly
consistent.

However, there are two major differences between the two problems that make the

parameter space search algorithm easier to implement. First, we have restricted the
parameter space to be a one-dimensional space. Among other things, this restriction

makes the problem of determining adjacency trivial. This is so because in one-dimensional
space we have a nice definition of adjacency: two phase portraits with parameter values

pi and p2 are neighbors in the parameter space if there is no other phase portrait with
parameter value p3 such that p3 E (Pi, p2). Such relation can be determined algebraically
without resort to geometric algorithms like the contour activation for deciding orbit

adjacency. Moreover, searching for missing objects is simple because the one-dimensional

bisection search runs in logarithmic time and is easy to implement.

Second, whereas an orbit can be a curve or a region in the phase space, a phase
portrait occupies a single point in the parameter space. So as far as adjacency in the

parameter space is concerned, we don't need to worry about the internal structure of a

phase portrait.

To emphasize the common structure underlying both search algorithms, I have im-

plemented parameter space searching by a consistency maintenance algorithm formally

identical to the one used in phase space searching. Besides capturing a common pat-

tern of behavior, this implementation has the advantage of being extendable to a two-

dimensional parameter space.
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5.5.1 Representation of a Phase Portrait

The basic object for parameter space searching is a phase portrait. Each phase portrait,
as discussed in the previous chapter, is represented by a collection of canonical flow
patterns, which are the output of the phase space searching module.

5.5.2 Representation of a collection of Phase Portraits

A data structure, called a FAMILY, is used to represent the list of phase portraits ex-
plored. The FAMILY is the basis for generating a pseudo-English summary description
of the bifurcation patterns, and answering questions about them. The internal repre-
sentation of FAMILY contains information about the range of the parameter value, the
types of bifurcation patterns found, and statistics about the current simulation run.

5.5.3 Consistency Complaints

When the family of phase portraits is not self-consistent, a complaint will be made.
A consistency complaint is a data structure describing the nature of the complaint.
Specifically, it records the type of complaint, and the identity of the phase portraits
involved. A complaint-dispatcher examines the type of a complaint, and invokes the
appropriate suggestion rule to propose a new candidate parameter value.

5.5.4 Basic Algorithm

The basic data structure is a flow pattern adjacency graph. The graph has one type
of node, and one type of link. Each node of the graph represents a flow pattern. Each
link stands for an adjacency relation. We say an adjacency link between two nodes is
valid if the orbits in question are adjacent in the parameter space. An adjacency link is
inconsistent if the adjacency cannot be part of a legal bifurcation pattern.

Consistency maintenance is the process of updating adjacency links: create new links,
remove invalid links, and identify inconsistent links. The process has two purposes: (1)
maintain correct adjacency relations between orbits as new orbits are added, and (2)
create a complaint for each inconsistent link. The complaints are stored in a stack,
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the complaint-stack. A complaint is removed from the stack when the adjacency link
causing the complaint is no longer valid. KAM continually searches for new flow patterns
until the complaint-stack is emptied.

The principal steps of consistency maintenance are:

1. Initially, pick some random parameter values. Create flow patterns corresponding
to these values.

2. Add the newly created flow patterns to the flow pattern adjacency graph.

3. Update adjacency links. Produce a list of invalid adjacency links to be removed,
and a list of new adjacency links to be added.

4. For each new adjacency link to be added, run inconsistency rules against it. If the
link is inconsistent, a new complaint is made. Put the complaint on top of the
complaint-stack. Add the new link to the graph.

5. For each invalid adjacency link to be removed, delete (if any) its associated com-
plaint in the complaint-stack. Remove the link from the graph.

6. Handle the complaint on top of the complaint-stack. Examine the type of com-
plaint, and propose a new parameter value to try.

7. Create a new goal with the suggested parameter value. Make a new flow pattern
with this parameter value.

* If the new goal leads to a flow pattern that is both qualitatively equivalent
and very close (< 0.1% of the parameter range) to an adjacent phase portrait,
then the goal is abandoned, and the associated complaint removed.

8. R-peat the process (steps 2 to 7) until the complaint-stack is empty.

The :onsistency maintenance algorithm terminates when all the inconsistency com-
plaints are removed. Note that a consistent flow pattern adjacency graph - a graph all
of whose portraits are pairwise and singly consistent - is a necessary but not sufficient
condition for the self-consistency of a family of flow patterns. For instance, KAM will ig-
nore the inconsistency between two flow patterns if the "gap" between them in parameter
space is too small (see step 7 above).
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5.6 EXPERIMENT

Let me use the Henon Map to illustrate parameter space searching using the consistency
maintenance algorithm. In particular, I will start with parameter value A = 1.328, which
gives rise to the familiar picture that we have seen several times before. The goal is to

show how KAM systematically explores the parameter space, identifying the interesting
bifurcation patterns as A varies from 0 to 2.2.

KAM explores a total of 38 phase portraits. It consumes about 120 hours of computer

time. The most interesting part of the experiment is the metamorphosis of the island
chain structure in the parameter range (1.328, 2.2). Comparing KAM's findings with
what's reported in Henon's paper, we discover that KAM finds something new. KAM

reports that a large 7-island chain should exist in the parameter range (1.818, 1.846).
This bifurcation is missing from Henon's paper.

The experiment will be presented in three parts: first, reporting what happens from
1.328 to 1.764; second, from 1.764 to 1.982; third, from 1.982 to 2.173. In the first

parameter regime, KAM finds 8 phase portraits; in the second, it finds 4; in the third, 8.

5.6.1 From A = 1.328 to 1.764

Fig. 5.11 displays the canonical flow patterns corresponding to 8 phase portraits that
KAM found in this parameter regime. The following is a summary of the steps leading
to the discovery of these phase portraits.

1. KAM is given A = 1.328 as the initial parameter value. It finds 10 orbits in the

phase portrait for this parameter value (see previous chapter), and the result is a

flow-pattern-1-1 with period 5 and rotation numbers = ((1, 1 ), (A-, -L)).

2. The non-maximal-parameter rule fires. It picks 1.764 (which is the average
of 1.328 and 2.2) as the next parameter value to try, and eventually creates a

flow-pattern-4-0 with rotation number = (-, -L).

3. The Poincare-Birkhoff-8 rule fires because the two canonical flow patterns are
not consistent. The reason is that their rotation numbers are not adjacent in the
farey ordering (because two low-order farey fractions, 1 and 1 , are between - and
A). So KAM picks 1.546, the midpoint between 1.328 and 1.764. The result is a
flow.pattern-0-0 with rotation number = (13 ) )
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Figure 5.11: KAM finds eight flow patterns in the parameter regime (1.328, 1.764)
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4. The Poincare-Birkhoff-8 rule fires again because the rotation numbers of the
flow-pattern-i-1 with A = 1.328 and flow-pattern-0-0 with A = 1.546 are not farey
adjacent. Also, the qualitative-equivalence rule fires because the the rotation
numbers of two adjacent flow patterns (with A = 1.546 and 1.762) with no island
chain are not farey adjacent. Two inconsistency complaints are stored on stack.

5. KAM handles the first complaint. It picks 1.437, the midpoint between 1.328 and
1.546. This parameter value results in a flow-pattern-0-0 with rotation number -

6. The Poincare-Birkhoff-8 rule fires a third time because (A, -L) are not farey
adjacent to (A, -L). KAM picks 1.383, the midpoint between 1.328 and 1.437.
This time the result is a flow-pattern-1-0 with a 5-island chain not bounded by any
closed curve.

7. At this stage, the four canonical flow patterns in the range (1.328, 1.546) are con-
sistent. So KAM will handle the inconsistency complaint that is stored on stack.

KAM picks 1.655, the midpoint between 1.546 and 1.764. The result is a flow-
pattern-0-0 with rotation number = (1, -).

8. The qualitative equivalence rule fires because the flow pattern with A = 1.655
is not consistent with the one with A = 1.546. Another midpoint, 1.601, is chosen.
This time KAM finds a flow-pattern-1-0 with a 4-island chain and rotation number= (, )

9. The Poincare-Birkhoff-9 rule fires because the flow-pattern-l-0 with A = 1.601
and the flow-pattern-0-0 with A = 1.546 are not consistent. So the midpoint, 1.574,
is tried. The result is a flow-pattern-i-1 with a bounded 4-island chain. At this
stage, all the flow patterns in the range (1.328, 1.764) are pairwise consistent.

5.6.2 From A = 1.764 to 1.982

This parameter range is most interesting because KAM finds a bifurcation that was not

reported in Henon's paper. KAM reports that a 7-island chain (and hence a stable

period-7 orbit) exists in the parameter range (1.818, 1.846) (Fig. 5.12). That a period-
7 Poincark-Birkhoff bifurcation should exist between the period-4 bifurcation and the

phantom 3-kiss is not obvious from reading Henon's paper. In fact, what he showed
seems to be a smooth change in the island chain structure as the parameter is varied
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from 1.60 to 2.01 - a 6-island chain appearing and disappearing, then a 5-island chain,
then a 4-island chain, and finally a 3-island chain.

The flow pattern with A = 1.764 is not consistent because of the non-maximal
parameter rule. The new value picked is 1.982. That results in a flow-pattern-0-0.
Skipping some of the details, we note that three more flow patterns are found, at 1.873,
1.818, and 1.846, in order to make all the flow patterns in this parameter range pairwise
consistent.
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Figure 5.12: KAM finds a large 7-island chain in the parameter regime (1. 764, 1.873)

5.6.3 From A = 1.982 to 2.173

A phantom-3-kiss bifurcation occurs in this parameter range. Fig. 5.13 shows the eight
flow patterns that KAM finds. Note that at A = 2.064, the fixed point has momentarily
turned unstable (Fig. 5.13f).
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5.7 OTHER EXPERIMENTS

Running a complete parameter space search takes a very long time because one phase
portrait can consume several hours of computer time. For instance, it takes about a week
of computer time (on a Symbolics) to generate the 38 flow patterns for the Henon Map.
So I have only tried one more set of extensive experiments: the Bak Map. I picked the
Bak Map because it displays the Rimmer bifurcations and period-doubling, which are
not found in the Henon Map.

For the Bak Map, KAM finds a total of 27 flow patterns in the parameter range
(1, 4.5). Recall at 4.0, a period-doubling occurs: the fixed point bifurcates into a stable
period-2 orbit.

5.8 EVALUATING THE PERFORMANCE

I will evaluate the parameter space search algorithm with respect to three criteria: effi-
ciency, completeness, and robustness.

Efficiency is measured by the number of non-redundant flow patterns that the program
finds. A flow pattern is redundant if its topological structure is completely identical
to one already found. The smaller the amount of redundancy the more efficient the
program is. With respect to this criterion, KAM performs extremely well. Out of the 38
flow patterns for the Henon Map, only 4 of them are redundant. For the Bak Map, only
1 of the 27 flow patterns is redundant.

Completeness concerns the ratio of the bifurcations that KAM discovers to the total
number of "interesting" bifurcations that exist. I count only "interesting" bifurcations -
bifurcations of low-order island chain and fixed point - because bifurcation theory tells
us that there are always infinitely many bifurcations of small, high-order island chains.
These high-order island chains usually occupy so tiny a fraction of the phase space that
they can be safely ignored.

For the Henon Map, we have seen that KAM's result is better than that given in
Henon's paper. KAM finds a significant Poincar6-Birkhoff period-7 bifurcation that
Henon missed. By calculating the multiplier of the fixed point of the Henon Map as
a function of the parameter, we can show that all the possible bifurcations of low-order
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island chains are in fact discovered by KAM. So for Henon Map, KAM's search algorithm
is complete. In fact, it should be mentioned that a similar calculation shows that the

search algorithm is also complete with respect to the Bak Map.

Robustness is the final criteria. It asks how well the program performs if the input
contains some error in it. For instance, can the program recognize that the input is
erroneous?

Recognizing erroneous input is an important problem because as we have seen the
phase space searching program may fail to find some island chain. As a result, a wrong
canonical flow pattern will be used to represent to actual phase portrait.

Unfortunately, the parameter space search program has no way to detect such error
at all; it can be "fooled" easily. In contrast, the phase space search program is more
robust. If you hand it some random collection of points, the program will complain if
this "orbit" intersects some other existing orbits.

What the parameter space search program can do is to help phase space searching by
suggesting initial states that are likely to result in island chains. The program is able to
make such suggestions whenever it sees island chains in some nearby flow patterns. Let's
ree an example. Suppose the same island chain is found at parameter values p1 and p2.
Then if it is required to create a phase portrait at some p3 E (pl,p2), it will be useful to
interpolate the locations of the known island chains to provide a good guess for searching
the island chain at the new parameter value.

5.9 EXECUTIVE SUMMARY OF NUMERICAL EXPERIMENTS

In the Introduction Chapter of this dissertation, I stated that the goal of KAM is to
produce a high-level qualitative description - an executive summary - from the output
of numerical experiments. The summary should contain essential information about the
dynamics that an engineer or a physicist studying the system may want to know. This
section will describe how KAM generates such a summary.

The summary consists of three pieces of information: (1) a description of the major
bifurcation patterns as some system parameter is varied, (2) a graph showing the relative
area covered by regular motion as a function of the parameter, and (3) a summary
picture showing the behavior of the system for initial conditions on some cross-section of
the phase space for all values of the parameter. Let me describe them in more detail.
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Description of Bifurcation Patterns

In exploring the Henon Map in the parameter range (0, 2.2), KAM discovers 38 phase
portraits. Too many details are contained in these pictures to allow a dynamicist to grasp
the essence of the system in a glance. So a more compact description is desirable.

Fig. 5.14 shows the summary description that KAM generates. That the description
is written in some pseudo-English is not important - it is for the benefit of the person
reading the output. What's important is that this information is captured in some
internal formal lan0 uage so that the information can be manipulated and reasoned about
by other programs. For example, we may use this kind of description for comparing the
overall dynamical behavior of two dynamical systems. The information may also allow a
user to choose a specific parameter range for more detailed study.

In the parameter range (0 2.2), IMN finds a total of 38 phase portraits.
The following bifurcation patterns are observed:

Poincare-Birkhotf bifurcation:
A pair of period-S orbits appears at about 0.876 and the 8-island chain disappears at about 1 .075.

Poincare-Birkkoff bifurcation:

A pair of period-7 orbits appears at about 1.000 and the 7-island chain disappears at about 1 .157.
Poincare-Birkhof bifurcation:

A pair of period-6 orbits appears at about 1.075 and the 6-island chain disappears at about 1.257.
Poincare-Iirkhoff bifurcation:

A pair of period-S orbits appears at about 1.271 and the S-island chain disappears at about 1.437.

Poincare-Dirkhoff bifurcation:
A pair of period-4 orbits appears at about 1.574 and the 4-island chain disappears at about 1.655.

Poincare-Birkhoff bifurcation:
A pair of period-7 orbits appears at about 1.819 and the 7-island chain disappears at about 1.873.

Extramal bifurcation:
A pair of period-3 orbits appears at about 2.003 and the 3-island chain disappears at about 2.037.

Phantm-3-kiss bifurcation:
The unstable period-3 orbit collides with fixed point at about 2.064.

Figure 5.14: KAM generates a sumnnwary description of the major bifurcation patterns
for the Henon Map.

The summary describes when major bifurcations occur. The most frequent bifurca-
tion, as expected, is the Poincari-Birkhoff . It is easy to generate the description for '

type of bifurcation - only one quantity, the span of an island chain, is needed. The
of an island chain is the parameter range in which the island chain persists. For instai.ce,
the 5-island chain in the flow pattern with A = 1.328 is first seen when A is 1.271, and
does not appear in the flow pattern before that. The island chain is seen breaking away
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from the central regular region when A is 1.383. By 1.437, the island chain has com-
pletely vanished. The values, 1.271 and 1.437, provide a conservative estimate for the

span: the island chain has already been created by 1.271, and destroyed by 1.437.

The extremal bifurcation is detected in the same way: the period-3 island chain does

not appear before A = 2.003, and vanishes at about 2.037.

Estimating when the phantom-3-kiss occurs is somewhat different. Here, we don't

have any island chain to follow. But KAM knows that the domain of stability around a

fixed point will shrink to a point when the unstable period-3 orbit collides with the fixed

point. So it looks for a flow pattern in which the region surrounded by the outermost
closed curve is vanishingly small. The flow pattern at 2.064 satisfies this condition.

Of course, by looking at the single flow pattern at 2.064, KAM cannot conclude that

this must be a phantom-3-kiss because the fixed point can lose its stability via other
types of bifurcation. To make such .,inclusion, KAM gathers more evidence by checking

the topology of the nearby flow patterns. For instance, if the flow patterns near the one

at 2.064 have a 3-island chain or if their outermost closed curves have rotation number

close to 1, then KAM will report detecting a phntom-3-kiss bifurcation.

Graph showing relative area of regular region

Fig. 5.15 is a plot of the relative area of regions occupied by quasiperioic orbits,
periodic orbits and island chains as a function of the parameter. A large area at a

particular parameter value means that for that parameter value the majority of initial

conditions will result in regular, predictable motion. Conversely, a small area means that

the phase space is mostly inhibited by chaotic orbits.

The plot shows two significant dips in the area of the regular region: first, at about

1.6; second, at about 2.0. Such information may be valuable to someone designing a

system. For instance, if it is desired that the system should stay around the fixed point

for a large range of initial conditions, the designer may want to avoid operating the

system around the parameter value 1.6 and 2.0.

The relative area of regular region of a flow pattern is calculated by summing two

quantities: the area bounded by the outermost KAM curve, and the area of any island

chains not bounded by KAM curves. One data point is obtained for each flow pattern.

The smooth curve in the plot is constructed by spline interpolation using all the data

points.
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Figure 5.15: A graph showing the area of regions in phase space occupied by non-chaotic
orbits as a function of parameter.

Picture of a cross-section of the mapping

The graph of relative area is useful for some purpose, but it does not capture the effect
of initial conditions as a function of the parameter. For instance, it may be interesting to
know how the system behaves for a fixed initial state over a range of parameter values.
Here are some of the questions we may ask. If the system starting at some state behaves
regularly at some parameter value, will it become chaotic if the parameter is increased to
certain value? Or, what are the states that correspond to some kind of periodic motion
(i.e., hopping from islands to islands)?

To do this brute force would require an enormous amount of computation because
one has to calculate an orbit for each initial state and each parameter value. We may cut
the computation down by looking only at a cross-section of the initial states. We can,
for instance, pick some line of initial states (preferably, an axis of symmetry), and ask
what sot, of orbit that will come out of it.

This is in fact what Henon did in his paper. The symmetry line he chooses is labeled
OW, which passes through the origin, and makes an angle of A with the horizontal axis

2

(Fig. 5.16).
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Figure 5.16: The solid line (OW) passing through origin and making an angle A with
the horizontal axis is the axis of symmetry for the Henon Map.

To generate a graph showing the type of orbit along some symmetry line, we don't
need to directly compute the orbit for each point on the line. Many of these computations
would be redundant. For instance, almost all 3 the initial states that lie inside an island
chain must be hopping from island to island regularly even though we have not actually
computed their orbits. This fact is a consequence of the topological constraint: closed
curves will be mapped to closed curves, and the points inside can't escape.

KAM exploits this topological constraint to reduce the amount of computation. It
classifies the type of a given phase space point by determining whether the point is
enclosed by a closed curve, or by an island, or by neither. In the first case, the point is
represented by a dot in the picture; in the second, by a circle; third, by a blank (Fig. 5.17).

'Not all because if we look at the islands in a finer Scale, we'll discover that some initial States will
do quite complicated things. For instance, there may be island chains inside the original islands. These
smaller island chains will in turn be surrounded by secondary homoclinic orbits. Points on or near the
homoclinic orbits can move in a very unpredictable manner.
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Figure 5.17: A picture showing the type of orbit for all initial points on the aids of
symmetry for 38 parameter values. Dots (e) indicate quasiperiodic orbits. Circles (o)
stand for islands. Blanks are for orbits that escape or are chaotic.

5.10 CONCLUSION: THESIS RESTATED

This chapter shows how the potentially infinite search problem of finding interesting
bifurcation patterns in a one-dimensional paramneter space can be effectively reduced to
a simple, local consistency analysis of neighboring flow patterns analogous to that ,ised
in phase space searching. Instead of randomly trying many parameter Values, KAM
carefully examines each flow pattern found to see if the flow pattern is consistent with
its neighbors. The consistency of flow patterns is derived from a deep mathematical
theory - generic bifurcation of fixed and periodic points. A simple grammar of behavior,
expressed in terms of a few dozen production rules, embodies knowledge of canonical flow
patterns, and their modes of transition. KAM focuses its search in regions of parameter
space where the geometry of flow patterns violates the grammar.

This chapter also provides the third example " of a problem solver whose computa-
tional structure can be nicely described by the aggregate- partition-classify paradigm.

"The other two examples are the orbit recognition program and the phase space seaching program.
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The aggregation step - determining adjacency of flow patterns in the parameter space -
is simple here because the parameter space is restricted to one dimension. But in general

the aggregation problem for multi-dimensional parameter space is still open. The par-

titioning step - grouping of flow patterns into larger meaningful patterns - is based on

domain-specific knowledge that island chains and stability of fixed (or periodic) points

are important features of dynamics. Finally, the classifying step - assignment of semantic

labels to groups of flow patterns - uses the vocabulary of generic bifurcation patterns.

Last, but certainly not least, is the power of Poincar6 's idea of representing com-

plicated dynamics by pictures. We have already seen how a phase portrait represents

solutions to all possible initial states in a single picture. Geometry of orbits and their

modes of transition provide the basis for efficient phase space searching. Here, the geom-

etry of flcw patterns and their modes of transition play the same crucial role in parameter

space searching. Geometric thinking does not automatically give us answers to all inter-

esting questions about dynamics. But it makes the problem manageable.
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Chapter 5 Summary

A bifurcation of a dynamical system is any change in the character
of its steady state behavior as some or all its parameters are changed.
In the language of modern dynamics, a bifurcation is any change in the
topological structure of a phase portrait. Parameter space searching is
the problem of (1) seeking all topologically different phase portraits in
a parameter regime, and (2) interpreting the search results in terms of
typical bifurcation patterns.

Efficient search for representative phase portraits is implemented
by a local consistency maintenance algorithm analogous to the
one used in phase space searching. The conditions for orbit consistency
are derived from a deep mathematical theory, the generic bifurcation
of fixed point of one-parameter area-preserving maps. When two in-
compatible flow patterns are found, the region in parameter space be-
tween the two flow patterns is searched for missing flow patterns. Re-
sulting flow patterns are [ge d in the flow pattern adjacency
graph, which keeps track of the spatial relationships among flow pat-
terns. The search process is terminated when the adjacency graph is
self-consistent. The adjacency graph is Ipartitioned] into groups of flow
patterns in terms of bifurcations of island chains or fixed points. The
bifurcations are classified into five generic types.

The final output of KAM is an executive summary of the entire
numerical experiments. It consists of three parts: (1) an English de-
scription of the major bifurcation patterns, (2) a graph showing the
relative area occupied by regular motion as a function of parameter,
and (3) a picture showing the types of orbit in a cross-section of the
phase space as a function of parameter.

The parameter space search program are tested with two area-
preserving maps: the Henon Map, and Bak Map. KAM not only is
able to automatically reproduce bifurcation patterns and their quali-
tative descriptions similar to those appearing in published papers, but
also finds interesting bifurcation patterns that previous researchers have
missed.
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Chapter 6

Solving an Open Problem

In the previous three chapters, we have seen that by combining geometric and symbolic
computation with knowledge of dynamics, it is possible to build a computer program,

KAM, that automatically plans, monitors, and interprets numerical experiments with
a special class of dynamical systems. The present chapter has two purposes: (1) to
demonstrate the usefulness of KAM by showing how KAM was used to solve a fluid
dynamics problem, a problem that I had not anticipated when KAM was designed; and
(2) to illustrate how KAM might aid an engineer in the solution of a real physical problem.

The case study involves analyzing wave motion in a rectangular tank driven period-
ically by a wave-maker. This problem has been studied for quite some time by many
fluid dynamicists [29, 15, 201, but is still not completely resolved. Using KAM's numer-
ical findings, I was able to obtain a first insight into the character of the solution in a
very short time. Once sufficient knowledge about the behaviors of the solution had been

gained, I applied a well-known analytical approximation method - Chirikov's resonance
overlap criterion - to the problem. The approximation was incorporated into KAM.
KAM was able to make theoretical predictions about the onset of chaotic behavior that
compared favorably with its own numerical results. 1

This chapter is devoted to presenting a scenario that shows KAM aiding an engineer
in the analysis of the wave motion problem, and explaining how the new capabilities

'The wave tank problem was first suggested to me by Professor Dick Yue in the Ocean Engineer-
ing Department of MIT. The entire case study, including the implementation of new capabilities, was
completed in seven weeks. A paper describing the main results of this chapter has been submitted to
Journal of Fluid Mechanics.
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demonstrated in the scenario are implemented. Wave motion is a complicated piece of
physics; consequently, some reaJers may find this chapter a little hard-going. Those
readers might prefer to ignore the mathematical details in the initial reading. It should
be noted that there is a rigorous mathematical basis for the informal and at times hand-
waving discussion in section 6.3. Lest some readers may get lost in the details, I will give
the punch line right away: KAM does not just work for a handful of preselected problems;
it captures significant knowledge about dynamics and geometry that allows it to contribute
to the solution of open scientific problems.

6.1 SCENARIO

The following sample dialogue shows how KAM might aid an engineer in exploring the
dynamics of the wave tank. All the capabilities shown have been implemented. As in

Chapter 2, the session is presented via an English dialogue solely for the benefit of the
reader; KAM has no natural language capability.

Engineer: Here are the amplitude equations for the lowest longitudinal and transverse resonant
modes. [He types in the equations (Fig. 6.6). He also types in algebraic equations relating the
coefficients in the amplitude equations with the physical parameters of the tank.] Show me the
phase portrait with the following parameter values: length-width ratio 1 = 0.248, water depth
d = 1.6, driving amplitude c = 0.009, and detuning frequency A = 0.2.

KAM: To plot the phase portrait, I need information to construct the Poincard section. You
can get a Poincare section by specifying a constant energy surface, and the value of one canonical
variable.

Engineer: Look at the energy surface E = 10. [He types in the expression for E, the hamzl-

tonian of the system (Fig. 6.6).] Also, choose the PoincarO section at q, = 0.

KAM: [After some time, KAM displays a phase portrait (Fig. 6.7), and reports its findings.]

The phase .trait has two canonical flow patterns. The first canonical flow pattern has an
elliptic fixed point at (5.5, -1.282). Surrounding the fixed point is a regular region bounded by
a KAM curve with rotation number between and . The second canoical flow pattern
has an elliptic fixed point at (-5.488, 1.294)... Chaotic orbits occupy 54% of the phase space.

Engineer: Tell me what happens to the phase portrait when the energy is decreased to E =

8.

KAM: [After some time, KAM displays a phase portrait (upper portion of Fig. 6.9), and
reports its findings.] There seems to be a Rimmer fixed point bifurcation between E = 8 and E
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= 10. Moreover, there is a large increase in the chaotic region from 0% (when E = 8) to .54%
(when E = 10).

Engineer: Call this bifurcation the critical energy phenomenon. Tell me if the same phe-
nomenon occurs when you halve the detuning frequency.

KAM: [After some time, KAM displays three phase portraits (Fig. 6.8), and reports its find-
ings.] There seems to be no chaotic region for E = 1 and E = 6. However, when E = 3, chaotic

orbits occupy 22% of the phase space.

Engineer: Call this bifurcation the banded energy phenomenon. [Now the engineer wants to
use an analytical approximation method to verify the numerical results.] Show me the resonance
overlap diagrams corresponding to the above two cases: A = 0.1 and 0.2.

KAM: For the banded energy phenomenon, the resonance overlap criterion predicts large-
scale chaos when the energy is between 2.53 and 5.96. (KAM displays the first resonance overlap
diagram (the top panel of Fig. 6.13).] For the critical energy phenomenon, the resonance overlap
criterion predicts large-scale chaos when the energy exceeds 9.92. [KAM displays the second
resonance overlap diagram (the bottom panel of Fig. 6.13).]

Engineer: [He is happy with the match between the analytical predictions and numerical find-

ings. He wants to investigate the effects of changing physical parameters.] How does the
detuning frequency A affect the amount of chaotic region (measured in terms of the fraction of
initial conditions in the phase space that lead to chaotic responses)?

KAM: There is a maximum response when A is about 0.22. The response tapers off at both
ends. [KAM displays a plot of the resonance overlap area as a function of the detuning frequency

(Fig. 6.14).]

Engineer: How about the water depth? How does it affect the amount of chaotic response?

KAM: There is a maximum response when the depth d is about 1.8. When d is increased, the
response falls gradually; however, when d is decreased, a sharp dec-ease occurs in the amount
of chaotic regions. In fact, one of the resonance zones completely vanishes at d = 1.36. [K.4M
displays a plot of the resonance overlap area as a function of the water depth (Fig. 6.16).]

Engineer: This is very interesting. Can you do the same for driving amplitude? For length-
width ratio? [And so on...]

What is the point of the scenario? The scenario is not about natural language under-

standing. Nor is it about the wave tank; a problem from celestial mechanics, for example,

vill serve the same purpose. My real concern is with looking at KAM from a broader
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perspective - showing how a computer program like KAM can act as a useful assistart to
an engineer, and demonstrating that other useful solution methods (including anal- a"
approximation techniques) can be easily incorporated into KAM's framework.

Let's turn to the capabilities KAM demonstrated in the scenario:

* KAM automatically decides what initial conditions to choose in creating a phase
portrait, and interprets its findings in high-level, qualitative terms.

e KAM automatically decides what parameter values to choose (the energy values
in our examp-) in creating a family of phase portraits, and provides a high-level
description of findings.

* KAM automatically applies an approximation method, and makes predictions about
the system's behavior.

* KAM automatically generates predictions about the effect of varying a physical
parameter.

The first two capabilities - phase space searching and parameter space searching -
have been described in the previous few chapters and should now be familiar to the
reader. I will explain how KAM applies the approximation method to make predictions.
But first, a few words about the wave tank problem, and its mathematical formulation.

6.2 STANDING WAVES IN A RECTANGULAR TANK

One type of problem that ocean engineers are interested in is to understand and predict
the effect of wave motion on floating bodies. For instance, for many engineering purposes,

it is important to calculate the pressure distribution and drag coefficients on a ship hull
subject to a given wave motion. The calculation requires a precise characterization of
the wave motion; but waves are generally hard to describe.

The governing equation for wave evolution, as we will see shortly, is a partial dir
ferential equation (PDE) subject to highly nonlinear boundary conditions. Solving the
PDE explicitly is beyond our present mathematical methods. In addition to nonlinearity,
the boundary conditions, which involve the free surface height, are generally not known
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in advance. That means numerical simulation of the full evolution equation will be ex-
tremely difficult. As a result, ocean engineers usually build large towing tanks just for
the purpose of measuring the ship motion, pressure, and drag coefficients empirically.

Such a state of affairs is not quite satisfying: among other things, these towing tanks
are very expensive to build. So there is a practical reason why engineers might want to
make the predictions theoretically. But more importantly, whether we are interested in
ships or not, wave evolution is a good physical problem. It encapsulates in a concrete
form a far-reaching general problem: how order and chaos arise in complicated dynamical
systems.

Wave evolution is a very intriguing piece of dynamics. To have any hope of making
progress in the problem, we should start with a simple physical model. Imagine a deep,
rectangular tank half-filled with water. Raise one end, and then gradually set it down.
What will you see? Water sloshing back and forth. In the simple case, high and low water
occur at the same time at opposite ends (Fig. 6.1a); in another situation, low water occurs
at each end at the same time (Fig. 6.1b). For a large tank with deep bottom, the sloshing
can go on for hours with waves oscillating with remarkable regularity.

A more convenient way to trigger the wave sloshing is by installing a paddle-type
wave-maker at one end of the tank (Fig. 6.2). The lower edge of the paddle is hinged
at the bottom of the tank. A motor controls the oscillatory motion of the paddle. By
varying the angular motion of the paddle, we can generate standing waves with various
amplitudes and periods.

6.3 MATHEMATICAL FORMULATION

With the physical setup in place, we begin our inquiry. The primary question confronting
us is how to predict the character of the standing waves - their amplitude and period
- in response to different controllable parameters such as the amplitude and angular
frequency of the paddle, the length-width ratio of the tank, water depth, and so on.

The first step of our inquiry is the formulation of the problem in mathematical terms.
Here we must exercise our judgment: deciding what approximations or idealizations to
make without losing the essence of the problem. The ability to make useful approxima-
tions - deciding what features are relevant - is probably the most valuable asset a good
scientist can have.
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(a) High water at one end, low at the other.

(b) Low water at both end

Figure 6.1: Two sloshing modes in a rectangular tank haf-ffilled with water. Only longi-
tudinal waves are excited.

So let's begin by making a few assumptions. First, we assume the motor delivers
a simple sinusoidal with frequency w and amplitude c, the only external disturbance
that upsets the equilibrium free surface. Second, we ignore surface tension and Coriolis
force, pretending that gravity is the only restoring force. Waves driven by a balance of
fluid inertia and its tendency under gravity to return to a state of equilibrium are called
gravity waves. Third, we will assume the wave tank is filled with an incompressible
fluid: say, water. And finally, we neglect the dissipation due to friction at the tank
bottom. This is not a severe restriction because it is known that dissipation has an
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Figure 6.2: A rectangular wave tank. One end of the tank is a wave paddle driven

periodically by a motor. Depending on the driving amplitude and frequency of the
motor, the longitudinal and cross waves can be excited simultaneously.

extremely small effect on water waves whose wavelengths are shorter than half of the
water depth. Such waves are called deep water waves.

Gravity waves have an important property that makes them easier to deal with math-
ematically: the 3uid motion is irrotational. That means, throughout the fluid there is

no vorticity. Vorticity is defined as the curl of the velocity vector; it measures the rate
of rotation of a fluid particle. Vorticity is a tricky concept to understand. A fluid motion
can follow a curved path and have no vorticity; on the other hand, it can follow a recti-

lines- path and have large amounts of vorticity. In general, a fluid motion is irrotational
if it is the result of conservative forces such as gravity.

Irrotationality means the curl of the velocity vector is identically zero. So the as-
sumption of irrotational fluid implies the existence of a scalar function, the velocity
potential 0 such that:

V=VO
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With further assumption of no friction and incompressibility, the equations of motion
can be written as a Laplace equation (Fig. 6.3).

A rectangular tank of water of width M. length L, and filled to a depth D.
The flow is assumed to be incompressible, inviscid, and irrotational. In toerus
of dimensioaless variables, the goveruing equation is gives by:

71= 0

where # is the velocity potential.

There are 5 boundary conditions:
(1) A fluid particle at the free surface (z (,y,t)) always remains at the surface:

where the subscripts denote partial derivatives.
(2) The pressure within the fluid motion must conform to Bernoulli's equation:

6, +f+ V. = 0

(3) On the sidewalls and bottom of the tank, there mast be no normal velocity:

Ox =0on s=1
#V =0 on W=O,t

$s =0 on z=-d

where the tank width is scaled to 1; length, 1; and depth, d.
(4) The wave-maker oscillates with frequency w and amplitude c:

a = ecoewt

(5) The man surface height is takes to be z a 0.

Figure 6.3: Formulation of the standing wave problem in a rectangular tank. It is not
necessary to understand the details of the mathematical equations for an appreciation of
the rest of this chapter.

T]- nonlinear boundary conditions almost certainly prevent us from obtaining an
explicit solution to the wave tank problem. You may try to solve the equations by brute
force; that is, compute the solution numerically. But, as mentioned earlier, this method
too is ineffective because of the unknown free surface conditions.

The traditional treatment of the gravity wave problem goes something like this: we
do not ask for a general solution; it may be too hard to find. Instead, we concentrate our
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attention on periodic soluton8 with the object of obtaining in the first place information
of a qualitative character about the periodic solutions. Once this has been done, we'll
proceed to refine the solution to obtain more accurate quantitative information.

There are several methods to obtain periodic solutions. These methods differ in
their assumptions about the general character of the solution, and in the amount of
computation required to obtain a reasonable approximation. The method of multiple
time scales, which I will explain shortly, turns out to be quite useful for our specific
problem. To apply the method, we need to understand the physics of the situation a bit
more.

Suppose the driving amplitude of the wave-maker is small. We should expect a nice
harmonic response along the length of the tank: a sinusoidal standing wave with the same
frequency as that of the wave-maker. Such a wave is called a longitudinal wave; its
crests are parallel to the wave-maker. The amplitude of the longitudinal wave depends on
the detuning frequency, which is the difference between the driving frequency and the
natural frequency of the wave. For certain detuning frequencies, the longitudinal wave
achieves a maximum elevation, in which case we say the longitudinal wave resonates with
the wave-maker. In physics, this type of excitation, where a vibrating element (a fluid
particle in our wave example) and the external drive move on parallel planes, is called a
forced resonance (Fig. 6.4).

Is a longitudinal wave the only kind of wave that the wave-maker can excite? The
answer is no. Experimentally, it has been observed that a cross wave, one whose crests
are at right angles to the wave-maker with half the frequency of the wave-maker can also
be excited. Another name for this is the transverse wave, since the vibrating element
moves in a direction perpendicular to that of the drive. Experiments have also shown
that the amplitude of the cross wave depends on the length-width ratio of the tank.

It is not hard to explain why a cross wave can be excited. Recall one of the most
favorite demonstrations in freshman physics: an inverted pendulum, which is unstable,
can be converted into a stable one if a vertical pulsating force of proper amplitude and
frequency is applied at the support of the pendulum (Fig. 6.4). Analogously, we can
destabilize the otherwise stable downward equilibrium position of the pendulum by the
same kind of pulsating force. The amazing feature of this phenomenon is that the di-
rection of the pulsating drive is orthogonal to that of the pendulum's oscillatory motion.
Physicists give such excitation a name, parametric resonance; this is so-called be-
cause a system can be set into resonant oscillation by periodically varying certain system
parameters (the length of our pendulum, for example) (Fig. 6.4).
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IFORCED RESONANCE I

PARAMETRIC RESONANE

Figure 6.4: Upper: A simple pendulum swings with large amplitude if the bob is forced

periodically at the same frequency as its natural frequency. Lower: A simple pendulum

can be parametrically excited if its length is varied periodically at twice its natural
frequency. If the amplitude of the variation is too small, the bob just moves up and

down vertically; but if the amplitude is large, the bob begins to swing spontaneously.
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We can explain how the pendulum oscillation is maintained by a simple energy con-
sideration. The vertical pulsating force provides the pendulum with a constant source
of energy. The tension of the light rod, which connects the pendulum bob to a pivot,
varies cyclically as it swings through the vertical; the tension is maximum at the vertical
and reaches a minimum at either end of the swing. If the periodic drive is such that the
upward velocity of the pivot is in phase with the variations of the tension, then energy is
fed into the pendulum at all phases of the oscillation. And since the tension runs through
two cycles for each complete cycle of the pendulum, the pendulum oscillates at half the
frequency of the periodic drive.

If the equations of motion for the gravity wave problem were linear, then any physicist
worthy of his trade would be able to write down a complete solution: calculate the
amplitude and frequency of the longitudinal wave, and the same for the cross wave; add
the two solutions together; and we'd be home and dry. But the equations aren't linear.
So we need some more fiddling.

What's the effect of the nonlinearity on the waves? Usually it means some coupling
between the longitudinal and the cross waves; consequently, energy transfer between
the two modes becomes possible. Now, if we assume the system is only weakly nonlinear
(say, by taking the driving amplitude e to be small), then we expect that the longitudinal
wave is essentially an oscillation with frequency w of the drive, but with slowly varying
amplitude and phase. Likewise the cross wave is essentially an oscillation with frequency

modulated by a slowly varying amplitude and phase.

This idea of slow modulation of the basic frequencies is the key ingredient in applying
the method of multiple time scale to our problem; that is, the wave motion is governed
by two time scales: a fast time scale, t, for the basic oscillation, and a slow time scale,
r, for the modulation (Fig. 6.5). So we can assume an approximate solution of the form:

C(z, y,t,r) = A(r) cos(wt) cos(Kz) + B(r) cos(2t) cos(Xy) (6.1)

where the Kis are wave numbers, and the functions A(r) and B(r) are assumed to be
slowly varying relative to cos wt. To account for possible phase differences between the
waves and the drive, it is conventional to let A(r) and B(r) be complex functions:

A() = pi(r)+ iq(,r)

B(T) = p2(r) + iq2(r)

where the pis and qjs are real functions. A(r) and B(r) are often called the complex
amplitudes of the oscillations; they contain both the amplitude and phase informa-
tion about the oscillations. Substituting equation 6.1 into the governing equations in
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Fig. 6.3 and applying solvability conditions, we arrive at a set of four ordinary equations

describing the evolution of the complex amplitudes (see Fig. 6.6).

Let's see what the amplitude equations mean. The equilibrium points of the equations

occur when 1h = 41 = h = 42 = 0, which implies the complex amplitudes A(r) and B(r)

are constants; that means we recover the solution to the linearized problem, a linear

combination of two periodic solutions. Periodic solutions of the amplitude equations,

however, do not necessarily imply the periodicity of each component solution; that is,

neither A(r) cos(wt) cos(miz) nor B(r) cos(ft) cos(4 2y) is periodic unless the complex

amplitudes have frequencies commensurate with w. Lastly, irregular solutions of the

amplitude equations mean o will vary irregularly with time.

RETROD OF 110 TINE SCALES

Setup:
A boundary-value problem depending on a small parameter c. The solution is denoted by f,

which is a function of space and time variables.
Step 1:
Let t be the fast time scale of O(e), and r = et be the slow time scale.

Look for solution of the following form:

j(, , ,r ) = f 0( , V ,t , r ) + af1( -,V, t, r ) + ( , , . )+ . .

with undetermined coefficients (in.
Step 2:
Substitute the assumed series into the governing equations to obtain a sequence of

partial differential equations, one for each order of a. The undetermined coefficients

are obtained by solving these PD~s subject to boundary conditions of the original
problem, and solvability conditions for the PD1s.

Figure 6.5: The method of two time scales is used to determine an approximate solution

to the wave tank problem. We will be interested in the first-order approximation o.

In approximating the free surface solution by a combination of two basic frejuencies,

we are neglecting the contributions from high frequency harmonics. But the payoff of

the approximation is enormous: instead of a PDE with complicated nonlinear bound-

ary conditions, we reduce the problem to four ODEs (ordinary differential equations)

governing the evolution of the two complex amplitudes. Moreover, as a consequence of

the zero-friction and incompressibility assumptions, the ODEs are canonical equations

derived from a single scalar function of four variables, the hamiltonian H (Fig. 6.6).
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AXPLITUD EQUATIS

JA 2

OA-L (-(-t + o)92 + q2(r,(p22 + q22 ) + E(p, + q ))
, - (-n - o)2 - P2 (r2 (P. + q2 ) + E(pl + q12)

The coefficients ,6,E,Ar, end y, are related to the physical permeters d, 1, e and w
by complicated algebraic equatioes.

The amplitude equations can be derived from a scalar function, the hamiltomion:

'72 (j1 + q2 ) + r2 P2 + q-2 )2 + 4 E(p2 + q2 )(p22 + q2)

Figure 6.6: The evolution equations for the complex amplitudes of the lowest resonant
modes. p, and q, are the real and imaginary parts of the complex amplitude for the
longitudinal wave; p2 and q2, the cross wave. These equations are nonlinearly coupled;
that means there are interactions between the longitudinal and the cross waves even at
the lowest resonant modes.

6.4 NUMERICAL FINDINGS

6.4.1 Making a PoincarA section

The amplitude equations (Fig. 6.6) can be thought of as a hamiltonian system with
two degrees of freedom. A complete description of the system therefore requires a 4-
dimensional phase space. Flows in 4-dimensional space, however, are not easy to visualize;
it is useful to find a simpler representation. Over 100 years ago, Poincari invented the
surface of section - a technique which bears his name - for this purpose.

The idea of the Poincari section is quite simple (section 3.1). If EE is a codimension
one surface (i.e., one dimension less than that of the phase space) transverse to a flow,
then the sequence zi of successive intersections of an orbit with ZE provides a lot of
information about that orbit. For example, if zi is periodic, the corresponding orbit is
also periodic. In particular, a fixed point on E]r corresponds to a periodic orbit with
period one. Moreover, on the surface of section EE, successive points belonging to a
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quasiperiodic orbit will appear to lie on some smooth curve, while those belonging to a
chaotic orbit appear to fill a region.

We can construct a surface of section EE for a Hamiltonian system with two degrees
of freedom as follows. Since the hamiltonian is a constant of motion, the 4-dimensional

phase space is foliated into 3-dimensional surfaces parameterized by the value of the
haailtonian. Now instead of following the entire continuous orbit on some constant
hamiltonian surface, one samples the orbit at discrete time intervals. The sampling can
be triggered, for instance, whenever the orbit crosses q, = c for some constant c. For a
given value of hamiltonian H = E, we can then solve for one of the conjugate variables

P, in terms of the other:
pi = pi(c, p2 ,q2,E)

The conditions H = E and q, = c define a family of 2-dimensional surfaces in the phase
space because there may be multiple roots for p1 . To get a single surface of section, we
can pick the one with say the largest root of pi. Call this section Er . As the phase flow
evolves with time, it repeatedly pierces EE. The successive intersections of an orbit with
Er generates a two-dimensional discrete map T:

2ql~ l =2 T(q', 2

where the superscript n stands for the nth intersection. The mapping T is called
Poincar6 map or the first return map. T is area-preserving, which is a consequence
of the conservation of the hamiltonian. In general, it is difficult to obtain an explicit form
for the Poincare map given the hamiltonian equations; therefore, we have to numerically
approximate it.

6.4.2 Compiling a description of Poincar6 section into numer-
ical procedures

KAM automatically translates a high-level description of the Poincare section into numer-
ical routines that compute the Poincari map. The translation is done by a higher-order

procedure, MAKE-POINCARE-MAP. The procedure takes three arguments: (1) the state

equations, which are given by a system of ODEs; (2) an equation of the form zj = c,
where zj is a state variable and c is some constant; and (3) an equation for the energy
surface. It returns a procedure, NUMERICAL-POINCARE- MAP, which takes as arguments

a point on the Poincar6 section and a value for the energy surface, and returns another

point on the Poincar6 section. NUMERICAL-POINCARE-MAP numerically integrates the
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state vector until it crosses the surface zj = c. The Bulirsch-Stoer algorithm with relative
accuracy 10- 7 was used to perform the integration.

6.4.3 Two interesting findings: banded and critical energy

phenomena

Fig. 6.7 shows an example of a Poincari section. The axes of the figure are the real and

imaginary part of the complex amplitude of the cross wave. The phase plane reveals

three fixed points: two elliptic fixed points surrounded by invariant closed curves, and

one hyperbolic fixed point near the origin. Outside the two regular regions around the

elliptic fixed points is a large chaotic zone. The chaotic zone is in turn bounded by

quasiperiodic orbits. The existence of chaotic solutions, as we have seen in section 6.3,

implies that the free surface waves behave irregularly as a function of time (provided that

o (given by equation 6.1) is a good approximation to the actual waves).

p2
15.6 E - 19

/ 1

-l.|...... .....

-6.5

-1.5

-15.A Q2

-15.6 1. -6941. 15.6

Figure 6.7: Poincar6 Map for the wave tank hamiltonian: E = 10 and A 0.2. A large

portion of the phase portrait is occupied by chaotic orbits.

Numerical experiments with the amplitude equations reveal two interesting findings.

First, at detuning frequency A = 0.1 and low energy level E = 1, the phase portrait
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appears completely regular: an elliptic fixed point at the origin surrounded by a nested
sequence of invariant curves (see Fig. 6.8a). When the energy is raised to E = 3, the
outermost invariant curves are destroyed, and a large chaotic zone is seen (Fig. 6.8b). As
the energy is further increased to E = 6, the total eaergy surface shrinks but the orbits
appear completely regular again (Fig. 6.8c). I call this scenario the banded energy
phenomenon because chaotic orbits seem to appear only for an interval (or a band) of

energy values.

The second finding is what I refer to as the critical energy phenomenon because
there seems to a critical energy level beyond which chaotic orbits dominate the phase
space. This occurs when the detuning frequency is doubled to A = 0.2. When the energy
is low 0 < E < 8, the phase portrait consists only of regular orbits (Fig. 6.9a). For
energy somewhat larger, say, E = 10, we see that the elliptic fixed point at the origin
has lost its stability, becoming hyperbolic and giving rise to two new elliptic fixed points
(Fig. 6.9b). Moreover, a large chaotic zone occupies most of the energy surface.

6.5 APPLYING AN ANALYTICAL APPROXIMATION METHOD

6.5.1 The idea of Resonance Overlap

According to the KAM Theorem, sufficiently incommensurate invariant curves persist
under small perturbation of an integrable system (section 3.1). As the perturbation
strength increases, neighboring resonance zones will interact. Initially, chaotic motion is
confined to a narrow region around the separatrices bounding the resonance zones. As two
resonance zones grow and eventually "overlap", any invariant curves between them will be
destroyed; there is no barrier to prevent orbits from diffusing throughout both resonance
zones, marking the onset of large-scale chaos. The idea that the overlapping of resonances
leads to widespread chaotic motion is developed by Chirikov into a practical method for
estimating critical parameters governing the appearance of chaos [5]. Although resonance
overlap is not a rigorous method, it is easily applicable to fairly complicated systems and

extendable to higher dimensions.

In its simplest form, Chirikov's Resonance Overlap Criterion postulates that the last
invariant curve between two lowest-order resonances is destroyed when the sum of the
half-widths of the two resonance zones just equals the distance between the resonance
centers (Fig. 6.10). A major assumption in the calculation is that the half-widths of
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(a) Hamiltonian E = 1: regular motion dominates
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(b) Hamiltonian E -3: widespread chaotic motion
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(c) Hamiltonian E = 6: regular motion dominates

Figure 6.8: A = 0.1. Banded energy phenomenon: large chaotic zones appear only for an
interval (or a band) of energy values.
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each resonance zone can be calculated independent of the other. This simple criterion
results in a conservative estimate because chaotic motion can result from interaction of
the secondary resonances lying between the two primary resonances before the primary
resonance zones touch. Nevertheless the simple criterion can quickly yield a rough esti-
mate for the transition to large-scale chaos. The results of applying the resonance overlap
calculation to the wave tank problem are shown in Fig. 6.11.

6.5.2 Resonance overlap diagram

The resonance overlap criterion can give us an analytical expression predicting when
large-scale chaos occur. However, it is much more illuminating to apply the method
geometrically. A resonance overlap diagram is a graphical device for performing the
geometric computation.

A resonance overlap diagram has four parts: (1) the center and boundaries of the first
resonance zone, (2) the center and boundaries of the second resonance zone, (3) the region
where the two resonances overlap, and (4) level curves of the zero-order hamiltonian H0 .

These four parts are illustrated in Fig. 6.12 for the case when the detuning frequency A
is 0.1.

What are the axes of the resonance overlap diagram? I have chosen to use I, and

12; they are the magnitudes of the complex amplitudes A(r) and B(r). In classical
mechanics, the Iis are called the action variables, or simply actions. But the choice of
variables is not obvious. Changing to a "right" set of variables is a powerful method for
solving many mathematical problems; unfortunately, there is no general recipe to guide
the selection of variables.

Each resonance zone is represented by a trio of lines: the center line is the set of loca-
tions of the resonance center, and the two branches are the boundaries of the resonance
zone. The two resonance zones are displayed in Fig. 6.12a and 6.12b. Superposing these
two zones, we obtain the overlap region as shown in Fig.6.12c. The level curves of the
hamiltonian turn out to be parabolas, and they are presented in Fig. 6.12d. Putting all

these parts together, we get the resonance overlap diagram (Fig. 6.12e).
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Two resonance zones

(1',A,I 2,A)

AS
(Ii,B,12.B)

IA J

Resonance zones overlap

.................. ......

Chaotic Region

Figure 6.10: Graphical illustration of resonance overlap criterion. When the separation
AS between the two resonance centers (IrA, 12,A) and s less than the sum of
the half resonance widths AJA + AJB, chaotic orbits appear in the overlap area (shown
as the dotted region).

6.5.3 Geometric algorithms to manipulate the resonance over-
lap diagram

The resonance overlap diagram contains important information about the behavior of
the system; for example, the critical energy levels and the extent of chaotic regions can
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APPLYING CIRIKOV'S ESONAICE OVERLAP CRITKUOU

Step 1: Rewrite the hamiltonian in action-angle variables

H-(-Yli + ri?- -n 2 + r 2 2 + 2E 1,I2 -0 2 COS292 + 6Tce)

Step 2: Isolate the major resonances

Ho = -(~vi + r 1 ?--rI 2 + r2 .2 + 2E 112)

HA = HO--12co202

HB = Ho+i%-2AIcW1e

Stop 3: Determine resonant actions
The resonance condition for HA is given by:

-n- - 2EI"I{2= 2F2

For HB, it is:
-f1 -2r, I,

Stop 4: Transform to canonical pendulum hamiltonian and determine resonance half-widths

The resonance half width for HA is given by:

=X

For HB it is:

A., = V 1"1

Figure 6.11: Details of applying the resonance overlap criterion to derive the resonant
actions and resonance half widths.

be read off from the diagram. KAM automatically constructs the resonance overlap
diagrams, and extracts information from them by using several well-known geometric
algorithms. The main idea is to approximate each resonance zone by a convex polygon,
and represent the overlap region as the intersection of two convex polygons. From such
representation, it is easy to deduce the critical energy levels and the size of overlap region.

Convex Hull
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(e) Superposing (c) and (d) to obtain the resonance overlap diagram

Figure 6.12: Resonance overlap diagram for detuning frequency A = 0.1
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Let S be the set of points that lie on the center line or the two boundaries of a
resonance zone. The resonance zone is approximated by the convex hull of S, the
smallest convex polygon containing ali the points of S. The convex hull is computed by
the Graham scan algorithm, which runs in O(n log n) time where n is the number of
points in S (see Shamos 1985). The output of the algorithm is the vertices of the convex
hull arranged in the counterclockwise direction.

Intersection of convex polygons

The resonance overlap region is approximated by the intersection of the convex hulls
corresponding to the two resonance zones. Intersection of two convex polygons is com-
puted by an algorithm invented by O'Rourke, which runs in O(n + m) time where n
and m ar- the number of vertices of the two convex polygons [24]. The output of the
algorithm is another convex polygon ordered in the counterclockwise direction.

Lines intersecting a convex polygon

To compute the critical energy values at which large-scale chaos appear, KAM cal-
culates which level curves of the hamiltonian intersect the overlap region. Because the
level curves are unbounded - they are either parabolas or hyperbolas - any of them that
intersects the overlap region will also intersect the boundary of the region. This obser-
vation makes the calculation of critical energy values easy. KAM walks along the convex
polygon representing the overlap region. For each vertex of the polygon, KAM computes
its corresponding energy. The critical energy values are the largest and smallest of all
these energy values on the boundary.

Area of a polygon

The size of the overlap region measures how chaotic the system is in the sense that
the larger the overlap region is, the more initial conditions will lead to chaotic motion.
The polygon representing the overlap region is divided into triangular pieces centered
at its centroid. The area of the polygon is obtained by adding up the area of all these
triangles. The area of a triangle is computed by Heron's formula, which says that the
area of a triangle with sides of length a, b, and c is equal to /s(s - a)(s - b)(s - c)

where s is the semi-perimeter of the triangle.
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6.6 COMPARING ANALYTICAL PREDICTIONS WITH NUMER-

ICAL FINDINGS

Let's see how the resonance overlap diagram explains the banded and critical phenomenon
observed in the numerical experiments.

If we put the level curves of the hamiltonian (Fig. 6.12c) and the overlap region
(Fig. 6.12c) together, something interesting happens (Fig. 6.13). For small hamiltonian
values (say, E < 2), we see that the level curves do NOT intersect the resonance overlap
zone. This suggests that isolated resonance zones dominate at low energies and so we
should see only regular motion. When E is approximately 2.5, the level curves just
touch the edges of the overlap zone, indicating the onset of chaotic motion. As E is
increased, the level curves sweep across the interior of the overlap zone. We therefore
expect widespread chaos in the Poincari section for these values of the hamiltonian. For
larger values of E (say, E > 5.9), the level curves no longer intersect the overlap region.
This predicts that regular motion becomes predominant again in the phase space in
this regime of the hamiltonian. Comparing the predictions from the resonance overlap
diagram with the numerical results in section 6.4, we find that the resonance overlap
criterion gives results that are in fairly accurate agreement with those obtained from the
numerical experiments. The resonance overlap diagram therefore explains the banded
energy phenomenon.

Next we repeat our graphical analysis with the detuning frequency doubled (i.e., A =
0.2). The results are summarized in Fig. 6.13. We have a similar resonance overlap region.
But, unlike the previous case, the level curves are hyperbolas instead of parabolas. At
low energy (E < 9), the level curves are away from the overlap zone. We should therefore
expect regular motion to be predominant. As E reaches a critical value, approximately
9.9, the level curves enter the overlap region. This suggests that the system becomes
chaotic for large values of the Hamiltonian. Unlike the previous case (A = 0.1), the
level curves never leave the overlap region once they are inside. This corresponds to the
critical energy phenomenon that we have seen.

Despite the success of our the predictions, the resonance overlap criterion should not
be expected to yield highly accurate results because of the approximations involved in
deriving a simple expression for the resonance width. Nevertheless, because the method
is general and the technique is easy to apply, it is a valuable tool for getting a "rough
idea" of the dynamics of the phase space without detailed, time-consuming numerical
simulations.
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Figure 6.13: Predicting critical energy levels for large-scale chaos. Upper: The level
curves of harniltonian first touch the overlap region when E is between 2 and 3; they
leave the overlap region when E is about 6. Lower: The level curves first touches the
overlap region when E is about 10; they stay within the overlap region even when E is
increased to the maximum allowable hamiltonian value.
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6.7 HOW PHYSICAL PARAMETERS AFFECT CHAOS

A Design Problem

Suppose we want to design a rectangular wave tank that exhibits chaotic motion
under most initial conditions. Why might we want such a tank? Because chaotic motion
allows rapid mixing of fluids, which may be quite useful for some purposes. For instance,
we may desire rapid mixing of a dispersant with oil leaking from a ruptured tanker to
prevent formation of large oil slick.

Solving the design problem requires some understanding of the effects of physical
parameters, such as detuning frequency A, driving amplitude e, water depth d, and length-
width ratio 1. In particular, we want to know what values of the physical parameters
will lead to a maximum amount of chaos where the amount of chaos is measured by the
fraction of the initial conditions in phase space that will lead to chaotic motion.

The design problem appears to be quite difficult. To begin with, the physical param-
eters are related in a very complicated way to the coefficients (such as 7y, I,, E) in the
amplitude equations. We do not have any analytic expressions, even approximate ones,
that relate the physical parameters to the solution of the Hamiltonian problem. Short
of help from analysis, we may resort to numerical simulations. But this is by and large
infeasible too because of the high-dimensionality of the parameter space.

Resonance overlap area as a measure of amount of chaos

The resonance overlap diagram suggests a new idea to search the parameter space.
So far in analyzing the overlap diagram, we just use the fact that the level curves of
the hamiltonian may or may not cross the overlap zone. But there is another piece of
important information in the diagram - the size of the overlap zone. The size of the
overlap zone measures the fraction of the initial conditions in the action space where
chaotic motion dominates. It therefore looks like plotting the size of the overlap zone
as a function of a physical parameter is going to be profitable. This idea is intuitively
appealing because producing one overlap diagram takes about one minute of computer
time whereas one picture of the Poincari Map can take up to 12 hours on a Symbolics
machine or a VAX 11/780.
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Using the size of resonance overlap region as a measure for the extent of chaos, the
following numerical experiments are performed. For each set of experiments, all but one
physical parameter are fixed. KAM computes the overlap area for a few values of the
parameters (the default is 8 parameter values ). Then it interpolates the data points by
a natural cubic spline to obtain a smooth curve. Figures 6.14 to 6.17 summarize the
results of four sets of experiment.

The first experiment studies the effect of the detuning frequency A on the size of the
overlap zone. The range of A is chosen to be between 0 and 0.4. The result is shown in
Fig. 6.14. We see that the overlap area is small when the detuning frequency is small,
but increases to a maximum around A = 0.2 and then falls off as A is further increased.
This is reasonable because A = 0.2 is approximately the resonant detuning frequency for
the longitudinal wave.
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Figure 6.14: Overlap area as a function of detuning frequency. The result is consis-
tent with the linearized theory: a maximum response at the resonant frequency of the

longitudinal wave.

The second experiment studies the effect of the length-width ratio 1. The result is
presented in Fig. 6.15. The overlap area peaks at about I = 0.25 and a much smaller

peak is located at around 1 = 0.3. The prediction is consistent with the linear theory
because 1 = 0.25 is approximately the value at which the cross wave is excited.

The third experiment studies the effect of the water depth d. The result is displayed
in Fig. 6.16. The overlap area attains a maximum when d is about 1.8. The figure also
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Figure 6.15: Overlap area as a function of length-width ratio. The result is consistent
with linearized theory: a maximum response at the resonant frequency of the cross wave.

shows the overlap area slowly decreases as the waer depth is increased. However, when
the water depth is decreased, the overlap area rapidly shrinks and at about d = 1.36, the
overlap area becomes zero. This is surprising for, unlike any of the previous cases, the
overlap area vanishes not because the two resonance zones do not overlap, but because
one of the resonance zones disappears (i.e., the resonance zone has zero width). It appears
that a major bifurcation is occurring at the critical water depth d = 1.36.

The final experiment studies the effect of the driving amplitude c. The result is
illustrated in Fig. 6.17. This time another unexpected result is obtained. For small
driving amplitude, the overlap area is small. The area increases rapidly as c is increased
until around e = 0.007. As c is further increased, the area actually decreases. This is
counterintuitive; one might expect that the larger the driving amplitude, the larger the
overlap area. At present, I do not have a good explanation for this phenomenon.

6.8 WHAT HAVE WE LEARNED?

Solving any realistic scientific problem requires knowledge, judgment, and attention to
many details. To make rapid progress, a scientist must be able to focus on high-level,
conceptual issues: decisions on what problems to attack, theory formulation, invention
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that used to occupy a significant portion of a scientist's (or his human assistants') time.
Automatic planning and interpretation of numerical experiments, automatic application

of approximation methods, automatic deduction of consequences from the approximation

methods - these are the capabilities that KAM now has and that enable KAM to interact

with a scientist in a high conceptual level.

The second conclusion is that building useful computer assistants for scientists is

likely to be very difficult and time-consuming. Faster and bigger computers are, of

course, helpful. But much more is needed. These computer programs must embody a

large amount of knowledge about the physical domain and the underlying mathematics

and geometric, symbolic, and numerical computation techniques.
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Chapter 6 Summary

This chapter presents a detailed case study: the analysis of standing
waves in a wave tank. The case study serves two purposes: (1) demon-
strating that KAM can solve problems that had not been considered
when it was designed, and (2) showing how KAM might aid a scientist
in the solution of an actual physical problem.

In addition to automatic phase space searching and parameter space
searching, two new capabilities are incorporated into KAM:

* automatic compilation of a high-level description of the
Poincar6 section into numerical procedures that approximate the
actions of the Poincar6 map.

e automatic construction of a resonance overlap diagram, and de-
ducing consequences from the diagram using geometrical algo-
rithms.

With KAM's high-level assistance, I was able to complete the entire
case study in a short time.

At present, KAM does not have any capability to assist a scientist
in problem formulation. Nor is it able to decide which approximation
methods to use.
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Chapter 7

Conclusion

7.1 WHAT DOES KAM DO?

Given the governing equations of a one-parameter Hamiltonian system with two degrees
of freedom, KAM automatically prepares numerical experiments, monitors the progress,
interprets the results, and plans further experiments based on its current findings. The
output is an executive report summarizing the major possible behaviors - bifurcation
patterns and the extent of chaotic behavior - of the system as the parameter is varied.
KAM rivals an expert dynamicist in its ability to make decisions about:

* how many iterates to look at

* what initial conditions to choose

* what parameter values to try

KAM can also apply an analytical approximation method, Chirikov's resonance over-
lap criterion, and generate resonance overlap diagrams, which are the basis for predicting
the onset of chaos.
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7.2 WHY DOES KAM WORK?

7.2.1 KAM's knowledge

KAM incorporates two types of knowledge: knowledge of physics and knowledge of ge-
ometry.

Knowledge of physics

Hamiltonian systems are very special dynamical systems: they preserve volume in
phase space. Volume preservation has many consequences. Some of these consequences
about two-degrees-of-freedom systems are embodied in KAM:

@ There are six possible orbit types: periodic orbit (including fixed point), quasiperi-
odic orbit, island chains, separatrix (or homoclinic orbit), chaotic orbit, and escape
orbit.

e Each orbit type has a distinct geometry on the Poincar6 section: a periodic orbit
appears as isolated points; quasiperiodic orbit, a single closed curve; island chains.
multiple isolated closed curves; separatrix, multiple connected loops; and chaotic
orbit, a random splatter of points covering a region. Escape orbits will leave any
bounded region in phase space.

o Orbits in phase space do not cross; consequently, on a 2-dimensional Poincar6 section.
orbits surrounded by a quasiperiodic orbit will stay inside the quasiperiodic orbit
forever.

o Orbits with incompatible rotation numbers cannot be adjacent to each other in
phase space.

o Each island chain must enclose at least one periodic orbit. Similarly, each quasiperi-
odic orbit must enclose at least one fixed point.

o There are five types of generic bifurcations: (1) extremal, (2) period-doubling, (3)
phantom 3-kiss, (4) phantom 4-kiss, and (5) Poincar6 -Birkhoff. For reversible
mappings, the Rimmer bifurcation is also generic.
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Knowledge of geometry

KAM knows some geometry - "know" in the sense of knowing how. This knowledge
include abilities to:

* recognize a closed curve

* detect clusters in a point set

e locate points of extremal curvature on a curve

* describe the shape of a minimal spanning tree in symbolic terms

* determine spatial relationships among orbits: adjacency and inside/outside relation

* compute convex hull

e find intersection of two convex polygons

o estimate area enclosed by a closed curve.

7.2.2 How is knowledge embodied in KAM?

Knowledge is represented in one of the two ways: production rules or algorithms. Physics
knowledge in terms of productions rules, physics knowledge in terms algorithms, geometry
knowledge in terms of production rules, and geometry knowledge in terms of algorithms -

all these forms are stored in KAM. Fig. 7.1 shows examples of each type of representation.

physics geometry
production If two quasiperiodic orbits have If the MST has a finite sequence
rules incompatible rotation numbers of hyperbolic segments

then they are inconsistent then it has a hyperbolic structure
algorithms algorithm to construct the Prim's algorithm to construct MST

resonance overlap diagram

Figure 7.1: Examples of encoding knowledge in different forms.
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7.2.3 How is knowledge used?

Processing in KAM occurs in three levels: orbit, phase space, and parameter space.
Each level is defined by an interpreter whose main activity is the sequential applications
of three operations: aggregation, partition, and classification. The output of one level, an
object with a semantic label, is fed into the next higher level. The basic units processed
at each level are different. The interpreter on the first level operates on point sets, while
interpreters on higher levels operate on larger units such as orbits (collection ot point
sets) and phase portraits (collection of orbits). At each level of processing, an interpreter
extracts information that is more concise and more global than that contained in the
input.

Knowledge of physics and geometry is integrated into the processing via the three
operations. First, the aggregation operation requires an adjacency relation, which comes
from knowledge of geometry, and a pairwise consistency relation, which comes from
knowledge of physics. Second, the partition operation can be based on domain-independent
geometric considerations (such as determining the inconsistent edges in a MST) or on
domain-specific physical facts (such as grouping phase portraits into legal bifurcation
patterns). Third, the classification operation is completely domain-dependent, relying
on facts about physics.

7.3 WHAT ARE THE CONTRIBUTIONS?

7.3.1 Smart computers know what not to compute

Dynamics of a nonlinear system is complex, but is not arbitrary. There are constraints
in the phase space and parameter space that restrict the class of legal trajectories and
legal bifurcation patterns. These constraints enable KAM to infer a good understanding
of a physical system from only a small, but well-chosen, set of experiments. Uncovering
what these constraints are and articulating them in some formal language is the major
contribution of this thesis. These explicitly formulated constraints can be taught not
only to a computer, but also to students of dynamics.
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7.3.2 Computers, like people, need imagistic reasoning

In observing professional physicists and engineers, we are often struck by how an expert's
"intuitive grasp" of a field is hard to articulate verbally. This is perhaps indicative of
the use of non-verbal reasoning processes as part of the process for solving otherwise
verbally presented problems. We observe scientists, engineers, and mathematicians con-

tinually using graphical representations to organize their thoughts about a problem. The
programs I am developing use numerical methods as a means of shifting back and forth

between geometric and symbolic methods of reasoning. KAM not only draws the orbits
and phase portraits, but also looks at these pictures and holds them in its "mind's eye"
so that powerful visual operations can be brought to bear on what otherwise would be
purely symbolic problems.

The idea that problem solvers employing visual, analogue, or diagrammatic repre-
sentations can be more effective than those relying on linguistic representations alone is
not new. Even before 1960, Gelernter's [8] Geometry Theorem Proving Machine used
diagrams to filter goals generated by backward chaining. Nevin's [21] forward-chaining
theorem prover focused its forward deduction of facts on lines explicitly drawn in a di-
agram. Stallman and Sussman's [27] EL program performed antecedent deductions by
exploiting the finite connectivity of devices. Finally, Novak's [22] ISAAC program used
diagrams to solve word problems in physics.

What is provocative, however, is the suggestion that our thought processes are im-
portantly imagistic, and that visual thinking may play a crucial role in problem solving.

In scientific computation there has been tremendous emphasis on visualization, but this
has mostly meant the development of computer graphics technology to aid human visu-

alization [18]. I believe that imagistic reasoning is a very general class of problem solving
strategies, and that progress in scientific computation may depend on machines' ability

to visualize as well as on people's.

7.3.3 Intelligent systems are built by layers of specialized in-
terpreters

The central organizing principle for KAM is that the designer must be free and com-
pletely flexible in specifying the processes that manipulate symbolic or geometric struc-

tures. Consequently, the system is built by separate layers of specialized interpreters.

Each interpreter has its own representation language to encode knowledge, its own data
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structure, and its own control. The interpreters communicate by passing interpreted sym-
bolic objects. That these three interpreters turn out to have the same general structure
- aggregation, partition, and classification - had not been anticipated when the system
was designed. In general, the designer should be able to choose whatever programming
technology seem appropriate, or even invent new ones, for the task at hanI.

7.4 WHAT'S NEXT?

7.4.1 Enhancing KAM

KAM has several limitations:

* It treats the equations of motion as a black box; a smarter program would look
at the form of the equations to see whether the equations have special properties,
such as reversibility.

* It has a limited ability to describe the shape of a chaotic orbit; it would be nice if
it can describe "holes" of a chaotic orbit independent of the underlying grid.

* It sets an arbitrary upper limit (1500) on the number of iterates that it is willing
to look at; looking at more iterates will increase its orbit recognition ability.

* It cannot handle higher dimensional Hamiltonian systems for two reasons: first,
new physics (such as Arnold diffusion) comes into play; second, the geometry of
orbits become more complicated (e.g., a quasiperiodic orbit no longer partitions
the phase space into two portions: an outside and an inside).

e It cannot handle multi-parameter Hamiltonian systems because we don't have a
complete classification of bifurcations of periodic orbits in such systems.

7.4.2 Workbench Approach to Scientific Computing

KAM is just one of the many computational tools that scientists or engineers might want
in solving their problems. For instance, they might want tools to help them formulate
mathematical models, make analytical predictions, or obtain numerical solutions to more
complicated mathematical problems.
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For problem areas that are not well understood, they might want to use different tools
at different stages of analysis. They might begin with a crude model that captures the
most obvious effects, and then perform a few numerical experiments to gain a general
understanding of the phenomenon. Armed with such understanding, they can often
isolate the essential aspects of the phenomenon for analytical study. They might then
compare the analytical predictions with more extensive numerical simulation and/or
empirical data (see Fig. 7.2, an elaboration of part of Fig. 1.1 in Chapter 1).

The wave tank problem in Chapter 6 provided an example of such a modeling and
analysis process. The complete mathematical model is given by the full Navier-Stokes
equations with complicated boundary conditions. Unfortunately solving the full equa-
tions numerically is beyond the capabilities of the most advanced computers today. So
he might make certain assumptions, like fluid incompressibility or zero dissipation, to
obtain an approximate model. The approximate model, which is a simpler set of partial
differential equations (PDEs), may still be too difficult or too expensive to solve nu-
merically. For certain types of PDEs, he can apply analytical techniques to obtain the
eigenvalue problems, which are a set of ordinary differential equations (ODEs). At this
point, many analytical approximation methods and numerical methods can be used to
solve the ODEs. In particular, smart ODE solvers like KAM can be used to completely
automate the planning and interpretation of the numerical experiments.

My future goal is to produce a sophisticated scientist's workbench - a computer system
that could automatically make approximation decisions, apply analytical techniques, plan
and interpret numerical experiments, and compare analytical results with numerical and
empirical data. No such workbench yet exists [1]. But for now I think it is our best hope
for meeting the von Neumann Challenge.
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Figure 7.2: A picture showing how various intelligent tools (indicated by rectangles)
might help a scientist in different stages of the modeling and analysis process. See also
Fig. 1.1 of Chapter 1. KAM is just one of the many tools belonging to the category of
smart ODE solvers. ROC stands for resonance overlap criterion, an analytical method
discussed in Chapter 6. Dotted arrows indicate data flow; solid arrows, control flow.

213



Appendix A

User Manual

This appendix will explain what it is like to use KAM. KAM is a display-oriented system.
You interact with KAM via a top-level window. I will first describe the structure of the
display window, and then the basic capabilities of KAM.

A.1 KAM WINDOW

Fig. A.1 shows the initial window when you first enter KAM. Now you can explore any
area-preserving map by clicking on the top-level commands or by directly typing in these
commands. The KAM window is divided into five panes: the picture pane, the action
menu pane, the simulation statistics pane, the history of orbits pane, and the interaction
pane.

Picture Pane

The picture pane is in the top-left corner of the window. Its purpose is presenting
numerical results graphically. You can draw the axes of the phase space, display orbits,
and show the current parameter value.

Action Menu Pane
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Figure A.1: The initial window when you first enter KAM. The picture pane is the larger
one on the upper left.

The action menu pane is the horizontal pane in the middle of the window. It is
a command processor pane. If you click on commands in the action menu, KAM will
respond by first asking for the information needed to carry out the action, and then
executing the action. You are not restricted to the commands in the menu. You can also
type in commands or execute Lisp functions in the interaction pane.

Simulation Statistics Pane

The simulation statistics pane is in the top-right corner of the window. It displays
statistics - such as the number of orbits found, number of initial states tried, creation
time of a phase portrait, and total simulation time used - related to phase space searching
or parameter space searching

History of Orbits Pane
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The history of orbits pane is in the right-middle portion of the window. It is used
in phase space searching. It shows a brief message about each of the orbits found so
far during the phase space searching. The message includes three pieces of information:
(1) a single character ("B" for bounding or "N" for non-bounding) indicating whether
the orbit bounds an area on the Poincar6 section or not, (2) type of the orbit (and a
bound for its rotation number if the orbit is quasiperiodic), and (3) the time required to
recognize it (Fig. A.8).

Interaction Pane

The interaction pane is the horizontal pane in the bottom of the window. You can
type in KAM commands or Lisp functions here. The pane is also used for displaying
messages while KAM is running various tasks.

A.2 TELLING KAM ABOUT THE MAPPING

Before running V kM, you need to tell it some information about the mapping that you
are interested in exploring. To do this, you click on the INIT command in the action
menu. The INIT command brings up a menu asking you for several pieces of information
such as the name of the area-preserving map, the topology of the phase space, the names
of the state variables, the range of state variables, and an escape range I (Fig. A.2).
Another important piece of information is the energy surface constraint. The constraint
specifies which part of the phase space is well-defined. We may need such a constraint if
the mapping is not total, i.e., it is defined only on a subset of the phase space.

To create a correctly scaled plot of the phase space in the picture pane, you click
on the CREATE PLOT command. The CREATE PLOT command asks you about the type
of plot (e.g., whether you want a log-log plot or a linear plot), the labels on the axes,
the starting values of the state variables on the axes, and so on (Fig. A.3). KAM will
calculate the scaling factors based on the information about the size of the picture pane
and the range of state variables.

'An escape range defines an escape region, which is given as the exterior of a closed and bounded set
in the phase space. For instance, if you specify the closed interval [-2, 2) as the escape range, then the
escape region is the exterior of the set S - { (x,y): I z [:5 2 and Iy I 2 }
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Choose Variable Values
Name of the iterate moo: HEMON-M9RP69
Topology of phase specs EUCLIDERr-PLRME
List of variables of the map: (X Y)
The parameter of the nap: R
Range of value on the x-exis: (-1 1)
Range of value on the y-amis: (-1 1)
Escape range: (-2 2)
Energy surface constraint: MIL

Exit E

Figure A.2: Menu for the init command. In this particular example, the user is interested
in exploring the mapping called HENON-MAP69. The phase space is the EUCLI!E AN
PLANE, and he wants to show the portion of phase space inside the square [-1,1] x [-1,1].
The escape range is given by [-2,2]. The mapping is defined on the entire phase space,
so there is no energy constraint.

Choose Usri bl aluas
Type of plot to be used: LOG-LOG-PLOT LOG-LWI-PLOT LWI-LOG-PLOT UN-UN-PLOT
Type of axes to be used. T-AX29 PLU-AZ] L-AUEZ
Label of the m-exis: x
Label of the y-axis: y
Scale of the m-axis: 264.4
Scale of the y-exts: 184.9
Starting value of variable on the x-amist -1
Starting value of variable on the y-axis: -1

Exit C3

Figure A.3: Menu for the create plot command. The user specifies a linear plot. KAM
automatically computes the scaling of the axes.

A.3 FOUR MODES OF KAM

KAM can run in four different modes - mode 0 to 3. Mode 0 is the manual mode. In
this mode, you have to make all the major decisions about finding orbits and phase por-
traits. Mode 3 is the completely automatic mode in which KAM automatically performs
parameter space searching in a specified parameter range. Mode 1 and 2 are in-between:
you and KAM share certain decision making in finding orbits and phase portraits. To
run a particular mode, you click on the corresponding command in the action menu
pane.

Mode 0: Iterating maps and displaying orbits
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Mode 0 is the manual mode. In this mode, KAM graphically presents the result
of iterating some mapping. To do this, you first click on POINT, which is displayed in

the action menu. KAM will ask you to select an initial state in the phase space with

the mouse cursor. After your selection, KAM displays the state you have chosen in the

interaction pane. If the state is not what you want, then you can reselect another

initial state by clicking on POINT again. Otherwise, you click on DO IT.

The DO IT command brings up a momentary menu for you to specify the values of

several variables such as the number of iterates and the parameter value (Fig. A.4). You

can modify the initial state by editing its value in the menu. The menu also asks you

how often the orbit should be sampled. For example, you can tell KAM to keep every
third iterate of the orbit. The default value is 1, i.e., all iterates are kept.

Rhoose gsm1able Values
unction ~to be iterated: HEIOM-MRP69
Parametar valuei 1.3204395
Initial state: (9.29727685 -6.15584415)
Range of state values: (-2 2)
Topology of phase space.: EUCLIDEAtI-PLAME
Nunber of Iterates: 360
Every nth Iteratet: 1
IExit E

Figure A.4: Menu for the do it command. The user sets the parameter value to 1.3284305,

and asks KAM to iterate the mapping 300 times.

By repeatedly using POINT and DO IT, you can manually search for interesting orbits

in the phase space.

To zoom in a small region of the phase space, you can click on the ZOOM command.

You will be asked to specify a rectangle in the phase space. KAM will magnify the

rectangle in a zoom pane, which overlays the picture pane. The zoom-in facility is

recursive. That means, you can specify another rectangle in the zoom pane for further

magnification. The UNZOOM action undoes all the magnification, and returns to the

original picture pane.

To erase the most recently drawn orbit, you can use the ERASE command.

Mode 1: Automatic orbit recognition

In mode 1, KAM performs two tasks: (1) determines the number of the iterates that

is needed for an orbit to reach steady state, and (2) identifies the type of the orbit. To
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do automatic orbit recognition, you start by selecting an initial state using the POINT

command. The initial state can also be specified explicitly by typing in the values of the
state variables when you bring up the menu for the MAKE ORBIT command.

The MAKE ORBIT command asks you to specify the number of iterates to start
(Fig. A.5). The default is 128. KAM will successively increase the number of iter-
ates until a steady state is detected. When the steady state is reached, KAM identifies
the type of the orbit.

Choor Variabi. VaIues
Initial state: ( .2927695 -0.1554415)
IInitial number of iterates: 129
fParameter value: 1.3264395IRange of state values: (-2 2)
Topology of phase space.: EUCLIDERI-PLME
nerement in number of iterates: 126

I Exit 0-I

Figure A.5: ,nu for the make orbit command. The user tells KAM to start with 128
iterates, and .r,crement by 128.

Orbit recognition usually takes a few minutes. While KAM is engaged in orbit recog-
nition, it will display various messages in the interaction pane to report its progress.
The messages in Fig. A.6 are typical. Explanation of these messages will be given in
Chapter 3.

Mode 2: Automatic phase space searching

In mode 2, KAM automatically searches for representative orbits. In addition to
recognizing orbit types, KAM decides what initial states to try. To start phase space
searching, you click on the MAKE PORTRAIT command. The MAKE PORTRAIT command
will first bring up a menu to ask you values of several variables (Fig. A.7). Most of these
variables have already gotten their values from initialization or by default. You have
to specify the parameter value for phase space searching, and an underlying grid (see
section 4.5).

Phase space searching can take a few hours on a Symbolics . Many messages will
be displayed in the interaction pane while the searching is going on. These messages
inform you the current status of KAM. In the history of orbits pane, KAM shows
the list of orbits found (Fig. A.8). When the orbits form a self-consistent phase portrait,
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f aking ma orbit at (0.2972768 -0.16584416) indicated by an 1.
Trying 128 Iterates...
Incomsistent edges detected by Zahk'o clustering a 0.
Total nodes = 128. Number of diameter nodes a 128. Branching nodes a 0
Diameter structure is (LIK).
Dimeater lmth a 2.1644907. Diameter nodes a 128. Beaching nodes a 0
Percentage of nodes om main at- and prinary breaches a 100.0%.
Percentage of brach nodes am diameter a 0.02.
Custers a 1. Inconsistent edges a 0. Longest inconsistet edge a 0.

Trying 256 iterates...
Inconsistent edges detected by Zahn's clustering = 0.
Total nodes a 26. Izmuber of diameter nodes w 266. Branching nodes w 0
Diameter structure is (LIE).
Diameter length a 2.1759877. Diameter nodes a 266. Breaching nodes a 0
Percentage of nodes am main stem and prinary branches = 100.02.
Percetage of branch nodes on diameter w 0.02.
Clusters w 1. Inconsistent edges = 0. Longest inconsistet edge a 0.
STABILITY index is 100.02.
The orbit reaches steady state at 256 iterates.
The iterates form a QUASIPZ.IODIC ORBIT.

Figure A.6: A typical progress report that KAM gives while it is performing automatic
orbit recognition. After 256 iterates, KAM concludes that the orbit is quasiperiodic.

hoose Jarable Values
Function to be iterated,: HEMti-MRP69

Topology of :es sewe.. : EUCLIDERrI-PLAME
Initial state: (0.29727695 -O.15584415)
Orbits to be eddeds NIL
Psrameter value: 1.3264385
Energy surface constraint: NIL
Range of state values: (-2 2)
Number of grids on one side: 25
Range of X-valums: (-1 1)
Range of y-values: (-1 1)
nisplay grids or not: To He

I ~Exit 13

Figure A.7: Menu for the make portrait command. The user tells KAM to explore the
phase portrait with parameter value = 1.3284305. He does not give any initial orbits. So
KAM starts with an empty phase portrait.

KAM terminates the search, and reports a summary describing the qualitative features
of the phase portrait (Fig. A.9). Explanation of these messages will be given in Chapter
4.

Mode 3: Automatic parameter space searching
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H4ISTORY OF ORBIITS
(1i ) () QUAIMXCE (S/36 1/3) Ll Mis. V. IM
(21) (3) QUAMIROIC (4119 3/14) 0. ada.N. IM
(3J) CD) QUA02IOCIC (3/34 4/19) 6.1 sUa ff. ZS
(41 -) C) QUANOOE (1/3 14) 6.1 usa. V. 25M
(S) .. 8C) S-EAND-CSAUN L4 uSa N - AM4
(6] .)(3) S-W.JJID-CAAIN sLs sta. W . 04
(1 1) 3D -as, WARAT~m 1U usa N -

Ell . CIS) S.AND-CIADI LS s. IN . M
(9 () )AM () UuhaI.U.$I?
(1S) -.) (9) QUAmSWSEX (443 "/l) 1.3 usa. X. 336

Figure A.8: KAM found 10 orbits. Each orbit is briefly described in the pane.

The phase portrait has I family of bifurcating orbits.

FXUT IVUCATZUG MILT:

Ih portai has anelliptic flixed point at (0.000 0.000) .
Surrounding the flied point is a regular region bounded by a IAN curve
with rotation saxier between 1/6 and 1/4.
Outside the regular region lies a chain of 6 islands.
The islnd chain is bounded by a KAM curve with rotation nuber between 4/21 ad 6/26.
The outermost region is occupied by 13CAPS orbits.

Chaotic orbits occupy 621 of phase space.

Figure A.9: A typical summnary report that KAM gives after it finds a self-consistent
phase portrait.

Mode 3 is the completely automatic mode. KAM makes all the decisions - recogniz-
ing orbit types, searching representative orbits, and choosing parameter values - that are
necessary for finding all the major bifurcations of fixed points and periodic orbits. To
start parameter space searching, you click on the EXPERIMENT command. The EXPER-

IMENT command will bring up a menu asking you to specify values for several variables
(Fig. A.10). Again most of these variables already have their default values. You only
need to specify the parameter range for parameter space searching.

Parameter space searching usually takes a very long time. For example, finding all
the major bifurcations for the Henon map in the parameter range (0, 2.2) takes about one
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Choose Variable Ucluep

Fnuntimo to be iterated.: NEON-MAPG9
Topology of" phase space., EUCLIDERf-PLRNE
Flow patterns to be added: MIL
Range of parameter value: (9 2)
Range of' state values: (-2 2)

Energy surface constraint: NIL
Number of' grids on ome sides 25
Range of x-values: (-1 1)
Range of' y-valueu: (-1 1)

Figure A.10: Menu for the experiment command.

week of computer time. At the end of parameter space searching, KAM will summarize
its findings in an executive report. Part of the executive report is about the major
bifurcation patterns. A typical example of such report is shown in Fig. A. 11.

Ia the prinater range (0 2.2), UAR finds a tOtaL of 36 phase portraits.

The following bifurcatio patterns era observed:

Poincere-Birkhoff bifurcatim:
A pair of period-S orbits appers at about 0.675 sad the 8-island chain disappoer at about 1.075.

Poicner-Birhotf bifurcatioum:
A pair of period-? orbits appears at bout 1.000 ad the -isla=d chain disappears at about 1.157.

Poincare-Birkhoff bifurcation:
A pair of period-? orbits appears at about 1.075 nd the 6-island chain disappears at about 1 .27.

Poincaro-Dirkhoff bifurcation:
A pair of period-6 orbits appears at about 1.271 sad the 6-island chain disappears at about 1.437.

Poinceare-Birkhoff bifurcation:
A pair of period-4 orbits appears at about 1.574 and the 4-island chain disappears at about 1.653.

Poincare-Dirkhoff bifurcation:
I pair of period-? orbits appears at about 1.819 and the -island chain disappears at about 1.673.

Kztremal bifurcation:
A pair of period-3 orbits appears at about 2.003 end the 3-iload chain disappears at about 2.037.

Pbanto-3-kiss bifurcation:
The unstablo period-3 orbit collides with fixed point at about 2.064.

Figure A.11: KAM generates a summary description of the major bifurcation patterns
for the Henon Map.
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